
www.manaraa.com

Towards Computer-Supported Collaborative Software

Engineering

A thesis

submitted in partial fulfilment

of the requirements for the Degree

of

Doctor of Philosophy

in the

University of Canterbury

by

Carl Cook

Examining Committee

Professor John Grundy Examiner

Associate Professor Nicholas Graham Examiner

Doctor Neville Churcher Supervisor, Head of Department

Associate Professor Andy Cockburn Associate Supervisor

University of Canterbury

2007

www.manaraa.com

www.manaraa.com

To Amanda, with all my love.

www.manaraa.com

www.manaraa.com

Abstract

Software engineering is a fundamentally collaborative activity, yet most tools

that support software engineers are designed only for single users. There are

many foreseen benefits in using tools that support real time collaboration

between software engineers, such as avoiding conflicting concurrent changes

to source files and determining the impact of program changes immediately.

Unfortunately, it is difficult to develop non-trivial tools that support real

time Collaborative Software Engineering (CSE). Accordingly, the few CSE

tools that do exist have restricted capabilities.

Given the availability of powerful desktop workstations and recent ad-

vances in distributed computing technology, it is now possible to approach

the challenges of CSE from a new perspective. The research goal in this

thesis is to investigate mechanisms for supporting real time CSE, and to de-

termine the potential gains for developers from the use of CSE tools. An

infrastructure, Caise, is presented which supports the rapid development of

real time CSE tools that were previously unobtainable, based on patterns of

collaboration evident within software engineering.

In this thesis, I discuss important design aspects of CSE tools, includ-

ing the identification of candidate patterns of collaboration. I describe the

Caise approach to supporting small teams of collaborating software engi-

neers. This is by way of a shared semantic model of software, protocol for

tool communication, and Computer Supported Collaborative Work (CSCW)

facilities. I then introduce new types of synchronous semantic model-based

tools that support various patterns of CSE. Finally, I present empirical and

heuristic evaluations of typical development scenarios.

Given the Caise infrastructure, it is envisaged that new aspects of col-

laborative work within software engineering can be explored, allowing the

perceived benefits of CSE to be fully realised.

www.manaraa.com

www.manaraa.com

Table of Contents

List of Figures viii

List of Tables xii

Chapter 1: Introduction 1

1.1 An Example Collaborative Development Scenario 4

1.1.1 Background . 4

1.1.2 Conventional Tools . 5

1.1.3 Collaborative Tools . 6

1.2 Research Goals . 7

1.3 Thesis Outline . 8

Chapter 2: Background 9

2.1 The Process of Software Engineering 9

2.1.1 Overview . 9

2.1.2 Software Engineering Methodologies and Processes . . 11

2.1.3 Software Engineering Artifacts 12

2.2 The Significance of Collaboration 15

2.2.1 Collaboration Defined 15

2.2.2 Project Life-Cycles . 15

2.2.3 Conventional Support for Collaboration 16

2.2.4 The Progression of Software Engineering 19

2.3 Defining Real Time Collaborative Software Engineering 22

2.4 Research Related to Collaborative Software Engineering 23

2.4.1 Software Engineering Processes 24

2.4.2 Groupware and Cscw 25

2.4.3 Source Code Control Systems 27

2.4.4 Human Computer Interaction 28

2.4.5 Distributed Systems 29

www.manaraa.com

2.4.6 Software Engineering Metrics and Visualisation 29

2.5 Previous Work Towards Collaborative Software Engineering . 30

2.5.1 Overview . 30

2.5.2 Design Tools . 31

2.5.3 Development Tools . 33

2.5.4 Inspection Tools . 37

2.5.5 Comparison to Caise-Based Tools 38

2.6 Collaborative Software Engineering Barriers 40

2.6.1 Groupware Support . 40

2.6.2 Building Industrial-Strength Tools 41

Chapter 3: Patterns of Collaboration 43

3.1 Motivation . 43

3.1.1 The Patterns Language 44

3.1.2 An Example Pattern 45

3.2 Patterns of Interaction . 48

3.3 Collaboration within Software Engineering 50

3.3.1 Modes of Collaboration 50

3.3.2 Current Facilities for Collaboration 51

3.3.3 Examples of Existing Collaboration Support 52

3.3.4 Types of Awareness . 53

3.3.5 Atomic Elements of Collaboration 53

3.4 Candidate Patterns of Collaborative Software Engineering . . 54

3.4.1 Formal Identification of Patterns 55

3.4.2 A Patterns Map for Collaborative Software Engineering 55

3.4.3 Applying Patterns of Collaborative Software Engineering 61

3.4.4 Collaboration Antipatterns 63

Chapter 4: Supporting Collaborative Software Engineering 67

4.1 Tool Support for Collaborative Software Engineering 68

4.1.1 The Need for Better Communication Support 68

4.1.2 Common Tool Design Approaches 69

4.2 Considerations for Tool Developers 71

4.2.1 Tool Design . 71

ii

www.manaraa.com

4.2.2 Requirements for Large-Scale Development 75

4.2.3 Threats to Tool Acceptance 77

4.2.4 Future Tool Design . 78

4.3 Semantic Model-Based Software Engineering 78

4.3.1 Constructing a Semantic Model of Software 80

4.3.2 Sharing the Project Model 82

4.3.3 The Code Neighbourhood 83

4.4 Awareness Support . 86

4.4.1 Types of Awareness . 86

4.4.2 Media Richness . 91

4.4.3 The Collaborative Spectrum 92

Chapter 5: The Caise Framework 95

5.1 The Need for a Better Tool Support 95

5.1.1 Motivation . 96

5.1.2 Framework-Based Tool Support 98

5.2 Overview of the Caise Framework 100

5.2.1 Architecture . 101

5.3 Architectural Design . 105

5.3.1 The Project Semantic Model 107

5.3.2 The Caise Event Model 114

5.3.3 Artifact Modification 116

5.3.4 The Caise Server . 120

5.3.5 Collaborative Tool Support 124

5.3.6 Framework Extensibility 125

5.4 Related Work . 126

Chapter 6: Using the Caise Framework 128

6.1 Overview of Current Caise-Based Tools 128

6.2 Caise-Based Tool Construction 130

6.2.1 Tool Construction Overview 130

6.2.2 Tool Services . 131

6.2.3 Caise Tool Widgets 133

6.2.4 The Caise Tool Protocol 138

iii

www.manaraa.com

6.2.5 Building a New Caise-Based Tool 140

6.2.6 Coding Examples . 145

6.3 Example CSE Tools . 156

6.3.1 Code Editors . 158

6.3.2 Diagramming Tools . 163

6.3.3 IDE Integration . 167

6.3.4 Constructing Collaborative Widgets 167

Chapter 7: Evaluation of the Caise Framework and Tools 169

7.1 Heuristic Evaluation . 169

7.1.1 Heuristic Evaluation of Groupware 171

7.1.2 Heuristics for CSE Evaluations 172

7.2 Visualisation Tools . 175

7.2.1 The Visualisation Pipeline 176

7.2.2 User Activity Visualisation 176

7.2.3 Artifact-Span Visualisation 178

7.3 User Evaluations . 178

7.3.1 Evaluation Method . 180

7.3.2 Evaluation Results . 183

7.3.3 Threats to Validity . 186

7.3.4 Discussion . 187

7.4 Framework Performance . 189

7.4.1 Memory Load . 189

7.4.2 Network Load . 191

7.4.3 Response Times . 192

7.4.4 Feedback Information versus Number of Users 193

Chapter 8: Caise in an Industrial Context 194

8.1 Managing Groups and Individuals 194

8.1.1 Working from a Source Code Repository 194

8.1.2 Partitioning of Projects 197

8.1.3 Compilation Crosstalk 200

8.1.4 Private Work . 203

8.2 Large Software Projects . 203

iv

www.manaraa.com

8.2.1 Tailoring Feedback . 204

8.3 Areas of Enhancement . 205

8.3.1 CSCW Floor Control Policies 205

8.3.2 Atomic Operations versus Refactoring 206

Chapter 9: Conclusions and Future Work 208

9.1 Conclusions . 208

9.2 Future Work . 209

9.2.1 Areas of Investigation 210

9.2.2 Future Evaluations . 211

References 227

Acknowledgments 228

Appendices 229

Appendix A: The Caise Server 230

A.1 Overview . 230

A.2 Language Support . 230

A.2.1 Parsers . 231

A.2.2 Source Code Formatters 232

A.3 Artifacts . 233

A.3.1 The Caise Document Buffer 234

A.3.2 Implementing Collaborative Undo 235

A.3.3 Tool Manager Plug-Ins 236

A.4 Server Applications . 237

A.5 The Caise Event Log . 239

A.6 Project Administration . 239

A.7 The Plug-Ins Interface . 240

A.8 Interprocess Communication 241

A.8.1 Asynchronous Communication 241

A.8.2 Synchronous Communication 242

A.8.3 Selection of Distributed Communication Technologies . 242

v

www.manaraa.com

Appendix B: Language Specification for Decaf 244

B.1 Overview . 244

B.2 An Example Source File . 244

B.3 An Example Grammar . 244

Appendix C: Caise Event Log DTD 247

Appendix D: Caise Server Plug-Ins Specification 251

D.1 CAISEAnalyser . 251

D.2 CAISEFeedback . 252

D.3 CAISEFormatter . 253

D.4 CAISEParser . 253

D.5 CAISEServerApp . 253

D.6 CAISEToolManager . 254

Appendix E: IDE Integration 256

Appendix F: User Evaluation Design 260

F.1 Overview . 260

F.2 Aim and Purpose . 261

F.3 Evaluation Methodology . 261

F.3.1 Participants . 262

F.3.2 Physical Layout . 262

F.3.3 Apparatus . 263

F.3.4 Supporting a Minimal Code Repository Interface . . . 263

F.3.5 Tool Modes . 264

F.3.6 Task Types . 265

F.3.7 Order of Groups and Tasks 266

F.3.8 Training Manual . 267

F.3.9 Evaluation Tasks . 268

F.3.10 User Survey . 268

F.3.11 Statistical Validity . 268

Appendix G: User Evaluation Documents 273

G.1 Evaluation Documents . 273

vi

www.manaraa.com

G.1.1 Training Manual . 273

G.1.2 Training Tasks . 274

G.1.3 Evaluation Tasks . 275

G.1.4 Surveys . 276

G.2 Source Code . 276

Appendix H: Accompanying Resources 277

vii

www.manaraa.com

List of Figures

1.1 A typical conventional configuration for software development. 2

1.2 A software engineering scenario using Caise-based CSE tools. 7

2.1 The lifecycle of software development [122]. 11

2.2 A typical revision history tree for a software project. 13

2.3 Artifact modifications within a software project. 14

2.4 The cost of correcting errors across the development lifecy-

cle [102]. 19

2.5 Perceived evolution of software engineering. 21

2.6 The disciplines associated with CSE. 23

2.7 The MAUI Groupware toolkit [55]. 26

2.8 Microsoft’s SharePoint desktop collaboration system [71]. . . . 27

2.9 A visualisation of class cohesion using the JST pipeline [60]. . 30

2.10 The Poseidon collaborative UML tool [11]. 32

2.11 The Rosetta web-based collaborative design document tool [48]. 33

2.12 The Moomba collaborative XP development environment [92]. 34

2.13 The Tukan collaborative code editor [100]. 35

2.14 A graph editing tool within the Eclipse Communication Frame-

work [66]. 35

2.15 Borland’s JBuilder IDE with pair-programming capabilities [12]. 36

2.16 The Augur inspection tool [41]. 37

2.17 The Palant́ır collaborative visualisation tool [98]. 38

3.1 An example of the Action/Reaction candidate pattern of CSE. 47

3.2 The CSE patterns map. 56

4.1 A UML class diagram for a simplistic semantic model of software. 79

4.2 The combined code neighbourhood for two developers, using

UML notation. 84

4.3 Media Richness Theory: reducing ambiguity by media selection. 92

viii

www.manaraa.com

4.4 The collaborative spectrum of software engineering. 93

5.1 A general schematic representation of the Caise framework. . 99

5.2 Artifact modification within the Caise framework. Internal to

the framework is a constantly-updated semantic model, which

represents the authoritative structure of the software project,

and is used to provide accurate, fine-grained feedback infor-

mation to participating tools. 101

5.3 The Caise framework in the context of the collaborative spec-

trum. 104

5.4 An illustration of the Caise framework and participating tools.105

5.5 Relationships between key components of the Caise framework.106

5.6 A semantic model of object-oriented software [60], in UML

notation. 108

5.7 The three conceptual layers of the Caise framework. 112

5.8 The Caise event model. 115

5.9 Key types of actions within the Caise framework. 117

5.10 Schematic view of an artifact modification within Caise. . . . 119

6.1 The Caise User Tree widget, supporting a user-centric project

view. 134

6.2 The Caise Change Graph project management widget. 135

6.3 The Caise Users Pane, providing voice and text communication.135

6.4 The Caise Build Pane with adjustable levels of collaborative

awareness. 136

6.5 The Talk Button Caise collaborative widget. 137

6.6 The Caise Collaborative Text Pane with remote highlighting

and telecursors. 137

6.7 The recommended threading model within a Caise-based tool. 139

6.8 Initialising a Caise-based CSE tool. 145

6.9 Adding widgets to a Caise-based tool. 146

6.10 Downloading a Caise artifact. 147

6.11 Downloading the semantic model and an auxiliary artifact. . . 148

6.12 Implementing a key listener within a collaborative text editor. 149

6.13 Sending a local tool action event to the Caise server. 150

ix

www.manaraa.com

6.14 Modifying an auxiliary artifact. 151

6.15 Processing events thrown by the Caise server. 152

6.16 Updating the local view of the Java code editor based on

framework events. 153

6.17 Updating the view for the UML class diagrammer. 154

6.18 Implementing a custom feedback plug-in. 155

6.19 Implementing a tool manager plug-in. 157

6.20 A Caise-based collaborative code editor for Java. 159

6.21 A Decaf collaborative code editor. 161

6.22 A code age collaborative text editor. 162

6.23 The event sequence for updating a code age display. 163

6.24 A collaborative UML class diagrammer. 164

6.25 A Decaf collaborative code editor. 166

7.1 Visualising Caise event log data. 176

7.2 Treemaps showing events in a Caise session. 177

7.3 Temporal analysis of user activity within a Caise-based project.178

7.4 Artifacts accessed within a Caise-based project. 179

7.5 The graphical interface of the program under modification dur-

ing the evaluation sessions. 182

7.6 Mean task completion times for within file tasks. 184

7.7 Mean task completion times for between file tasks. 184

7.8 Lines of code versus server memory usage. 190

8.1 A typical revision trunk for a collaborative software project. . 195

8.2 A syntax-directed code repository interface. 196

8.3 A simplistic example of a well partitioned software project. . . 198

8.4 Various configurations for group work using CSE tools. 199

8.5 The various modes of collaborative view when compiling from

within a Caise tool. 201

8.6 The likelihood of build failures: collaborative versus conven-

tional modes of work. 202

A.1 The Caise server architecture. 231

A.2 Typical role of a Caise-based parser. 232

x

www.manaraa.com

A.3 User positions within a Caise document buffer. 234

A.4 A server application which inspects the semantic model of a

Caise-based software project. 237

A.5 The code listing for a simple server application. 238

A.6 The plug-ins configuration panel of the Project Manager Panel.240

B.1 An example source file for the Decaf language. 245

B.2 The full grammar for the Decaf language. 246

E.1 The Together Architect IDE operating within Caise. 257

E.2 The Together IDE operating alongside a Caise-based editor. . 259

F.1 Evaluation layout of CSE tools experiment. 263

xi

www.manaraa.com

List of Tables

2.1 Feature matrix of existing CSE tools. 39

3.1 Synchronous versus asynchronous development: typical tasks

within each quadrant. 50

5.1 Event types within the Caise framework. 116

6.1 Key methods of the Caise tool API. 133

7.1 Summary of the subjective measures for tasks: NASA-TLX

workload ratings. Possible values range from 1 (low) to 20

(high). 185

7.2 Summary of the subjective measures for overall preference.

Possible values range from 1 (low) to 20 (high). 185

7.3 Post-session user comments. 186

F.1 Task types, tool modes and order of tasks. 266

xii

www.manaraa.com

Chapter I

Introduction

Software Engineering (SE) is undoubtedly a collaborative process. De-

velopers within a SE project work together during all phases of the software

development lifecycle.

In any discipline, teamwork is difficult due to the need for constant com-

munication and coordination of tasks. Collaboration in software development

teams is further complicated by the task of maintaining a range of products,

each with multiple versions.

SE tools typically have poor support for collaboration. Instead of being

designed upon collaborative processes central to SE, tools are based on a

single-user view of the development lifecycle.

Common problems that current SE tools fail to address include transac-

tional conflicts where concurrent changes to the project conflict with each

other semantically, and merge conflicts [70] where concurrent changes to the

same source file conflict lexically. Both of these problems stem from poor

awareness of other users’ actions, and an inability to synchronise the work of

developers at a fine-grained level.

These problems are worsened by the typical copy, modify and merge

idiom of conventional source code management systems [9], where long in-

tervals of isolated development are common, increasing the difficulties of the

source code integration and build process. A typical configuration for con-

ventional software development is presented in Figure 1.1, where notification

of program modifications is facilitated predominantly through source code

repository systems, and tool support for communication between developers

is low.

It is argued that the better communication and collaboration is sup-

ported, the better the SE process will be in terms of productivity and quality

1

www.manaraa.com

Figure 1.1: A typical conventional configuration for software development.

of the final software product [99]. However, as the field of Collaborative Soft-

ware Engineering (CSE) is in its infancy, many of these claims are yet to be

verified empirically. Only once quality real time tools exist will researchers

be able to realise the full potential and benefits of CSE.

Support for collaboration, both synchronous and asynchronous, exists

in other fields not directly related to SE. Within an office environment, it

is possible to share and collaboratively edit documents with fellow workers

to some extent. Teleconferencing facilities are also commonplace today, as

are real time virtual meetings where shared virtual whiteboards are used to

communicate ideas within a group of distributed personnel.

The successful application of asynchronous and synchronous collabora-

tion within other fields of research suggests that the practice of SE can also

become more collaboration-centric. Unfortunately, tools to support CSE are

difficult to design; SE involves aspects that are challenging to accommodate

using current Computer Supported Collaborative Work (CSCW) technology.

In particular, SE is based around numerous complicated artifacts such as

source files, where the document syntax is expansive and rigid, and many

relationships between artifacts exist. Adding CSCW features to existing

single-user tools, while an intuitive first step towards new CSE tools, does

not necessarily scale or provide the level of improvement envisaged.

2

www.manaraa.com

As an example of typical CSCW challenges within CSE, what should be

done when a user is half way through typing a method body into a text editor

and a user in a UML diagrammer renames that particular method? Are all

code changes lost? If not, how can the code change be preserved? It is not

surprising, therefore, that most collaborative features for both commercial

tools and research prototypes restrict collaboration to pair-programming and

token-passing floor control mechanisms.

Any CSE tool of a realistic scale has complex issues to address, such as

user interface design, CSCW floor control and management, varying levels of

collaboration requirements, varying expectations between developers within

a group, support of multiple artifact types, and potentially multiple views

of artifacts. There are also technical aspects to address such as concurrency

control and distributed system design, along with the standard SE techni-

calities such as parsing, semantic modelling and source code management.

Accordingly, only a few research prototypes such as Poseidon for UML [11]

have evolved into professional tools.

While it is certainly possible to implement collaboration-enhanced SE

tools, the single significant barrier to the success of tools may be the poor

ratio of tool power to development effort. Even once a good quality CSE

tool has been developed, there is no guarantee that it will gain widespread

adoption due to the varying requirements of software engineers; this mistake

has been made within related areas of CSCW research [19].

The purpose of the research presented in this thesis is to investigate mech-

anisms to support real time CSE, and to determine the benefits for software

engineers when such tools are used. As a secondary objective, this research is

aimed at reducing the barrier of high CSE tool construction costs by provid-

ing a framework that enables many new types of CSE tools to be developed

rapidly. The research premise is that given a framework to support challeng-

ing aspects of tool construction such as group management, artifact sharing

and semantic analysis of source code, it is more feasible to develop tools in

order to explore new aspects of CSE.

The research in this thesis focuses on creating a framework and proto-

type widgets for CSE tools. The framework, Caise (a Collaborative Ar-

chitecture for Iterative Software Engineering), supports the development of

3

www.manaraa.com

CSE tools that operate both synchronously and asynchronously. These new

types of CSE tools can be designed to avoid the problems associated with

conventional approaches to software development by increasing programmer

communication and awareness of others’ actions.

The Caise framework allows isolated programmers to work collabora-

tively without sacrificing communication. Caise-based synchronous CSE

tools achieve this by keeping all programmers within a group synchronised

in real time, at the same time providing customisable user awareness and

project state information to individual tools. The Caise framework is best

suited to a small group of developers who wish to work collaboratively and

in close contact on an entire software project.

The Caise framework provides an infrastructure with the potential to

support the entire SE process. Caise-based tools can be constructed that

provide more than just shared editing of basic software artifacts. Collabora-

tive compilation, testing and debugging of software projects is also possible

to implement using the services of Caise. Comprehensive inter-developer

communication facilities can also be constructed.

Many tools have been produced by way of this framework, including col-

laborative editors and diagrammers, reusable CSE widgets that can be added

to any existing SE tool, new types of user activity visualisations based on

fine-grained logging and project structure information, and custom CSE tools

such as real time project management agents and observers.

1.1 An Example Collaborative Development Scenario

To illustrate the concept of the Caise framework, an all-too-common SE

scenario is presented. First, an example is given of a coding conflict and

resolution between two developers using conventional tools. This is followed

by another example of the same scenario, but this time with the support of

Caise-based CSE tools.

1.1.1 Background

Bob and Alice are working on the same project, developing a graph editor

with a simple user interface written in Java. The user interface code is

4

www.manaraa.com

contained within one file named GUI.java, and the code to perform file

saving is in a file called Persistence.java. Two tasks require completion:

replacing the save(int fileType) method call with a call to the method

saveXML() from the file GUI.java, and adding a new method named save()

to Persistence.java that saves the current file using the system default

format.

1.1.2 Conventional Tools

Using conventional text editors and a code repository such as CVS, Bob and

Alice will both take separate copies of the current version of the code from the

repository (version 1.1, for example) and start working independently. Alice

has chosen to edit the GUI code, and she replaces the save(int fileType)

method call with saveXML(). At that point, Alice re-compiles her code, tests

her working copy of the program to ensure that it operates, and then checks

her files back into the CVS repository. This marks GUI.java as version 1.2.

At the same time, Bob starts working on his task of adding the new

save() method to the file Persistence.java. Not only does he complete

this method, but he also deletes the existing saveXML() method, as according

to the current code base (version 1.1), no calls to this method are made. Bob

re-compiles his program, and it compiles and runs without error. He then

checks his files back into the repository, which marks Persistence.java as

version 1.2.

Both Bob and Alice then leave for the day, knowing that they have suc-

cessfully made improvements to the latest version of the graphing tool. Un-

fortunately, when they arrive to work the following day, they are advised that

the nightly rebuild from the code repository failed, due to an unresolved call

to the saveXML() method.

After scheduling a meeting, Bob and Alice realise the source of the prob-

lem that they have unintentionally created. To resolve it, they decide that

to save in XML, the new save() method is to be called after setting the

system file format to XML. Therefore, Alice checks out the entire code base

again (version 1.2), changes the call in GUI.java from saveXML() to save()

after specifying the system file format, and re-compiles the program. After

5

www.manaraa.com

verifying that the program works, GUI.java is checked back into the central

repository as version 1.3, and the project is now up-to-date.

When working very closely with each other, Bob and Alice might im-

mediately notice that their given tasks have the potential to conflict unless

care is taken, and that some negotiation is necessary to successfully modify

the existing code base. In normal coding practice, however, conflicts of this

nature are common, particularly as the number of concurrent developers in-

creases. The protocols that the programming team employ, such as frequency

of code integration and degree of communication during development, govern

the number of conflicts encountered and the level of effort required to merge

conflicting modifications.

1.1.3 Collaborative Tools

Using Caise-based real time CSE tools for the above task, developer interac-

tion can be very different. Even though Bob and Alice could set out working

on separate tasks using different types of development tools, as soon as Bob

and Alice place their cursors in code that is semantically related, the Caise

framework will send notification to their tools that a semantic relationship

exists. A Caise-based CSE tool that responds to this type of feedback is

illustrated in Figure 1.2.

Using the current coding scenario, when Bob moves his cursor over the

saveXML() method with the intention of deleting it, his tool will be able

to inform him that this method is now called from a method within the

file GUI.java, which is currently being edited by Alice. This information is

shown in the feedback panel, presented in the lower half of Figure 1.2. Even

if Bob did choose to delete this method, both he and Alice will be notified

immediately that the program has just been broken due to an unresolved

method call.

This is only a simple example of the capabilities of Caise-based tools.

Chapter 6 presents in more detail some typical Caise-based tools which

provide many different types of feedback mechanisms, such as telecursors,

real time metrics, chat facilities, and widgets that indicate the current state

of the project and its associated artifacts such as source files. In the above

6

www.manaraa.com

Figure 1.2: A software engineering scenario using Caise-based CSE tools.

simple scenario, a clear illustration is given of the fundamental premise of the

Caise framework: through real time monitoring of user activity and semantic

analysis of the underlying software, it is possible to provide collaboration

support far richer than currently available within conventional SE tools.

1.2 Research Goals

The areas of SE, CSCW and distributed communication are well-researched.

Synchronous CSE, however, is an emerging field of research, and the body of

knowledge is relatively small. At the time of writing, no holistic frameworks

to support CSE at a fine-grained level have been demonstrated, either at a

theoretical or practical level. The motivation for the research presented in

this thesis, therefore, is to provide such a framework that supports the de-

velopment and run-time requirements of CSE tools, and to evaluate example

tools that the framework can typically support.

7

www.manaraa.com

The research components of thesis are:

• A background study of CSE and related areas of research

• Identification of primary design considerations for CSE tools, including

the identification of candidate patterns of CSE

• The presentation of a framework for CSE tool construction that sup-

ports the identified patterns of CSE

• A demonstration of several tools to support CSE, based upon the Caise

collaborative framework

• Evaluation of the Caise framework and associated CSE tools

1.3 Thesis Outline

In Chapter 2, an overview of work towards CSE is given. Existing CSE

tools are reviewed, as well as supporting technologies such as Groupware,

distributed systems and configuration management. In Chapter 3, patterns

of collaboration related to SE are discussed. In Chapter 4, the requirements

for CSE tools to support such patterns of collaboration are presented.

In Chapter 5, the Caise framework is discussed and a full description of

the Caise framework is given, including implementation details. This chap-

ter also includes a discussion of how the facilities provided by the underlying

framework support CSE tools. In Chapter 6, the application of Caise-based

tools is illustrated. Demonstrations of how different tools are used within

collaborative development settings are provided. This includes a discussion

on how CSE tools are developed within the Caise framework.

In Chapter 7, an evaluation of the Caise framework and supporting tools

is presented. In this chapter, heuristic evaluations for such tools are also

introduced. In Chapter 8, open problems for the Caise framework are dis-

cussed. This chapter also discusses how the Caise framework can be used

within an industrial context.

Final conclusions are made in Chapter 9. Directions for future work are

provided, both for the Caise framework and associated collaborative tools.

8

www.manaraa.com

Chapter II

Background

In this chapter, the background related to CSE is presented. In Sec-

tion 2.1, the process of SE is discussed, including common methodologies

and developer roles. The significance of collaboration within SE is addressed

in Section 2.2. A definition of what the field of CSE encompasses is given in

Section 2.3, including a description of what CSE tools aims to provide.

Research closely related to CSE, such as distributed computing and Group-

ware systems, is summarised in Section 2.4. A detailed discussion on previous

work towards support for CSE is presented in Section 2.5. This chapter con-

cludes in Section 2.6 with a description of current barriers to the support of

CSE, including an outline of the key difficulties in implementing CSE tools.

2.1 The Process of Software Engineering

This section outlines the process of SE as a prelude to Chapter 3: Patterns

of Collaboration.

2.1.1 Overview

SE is the result of a maturity within the field of software development. The

seminal point of this maturity was the 1968 NATO conference [78], where

a progression from unorganised, unstructured hacking to well-planned engi-

neering during all phases of development was promoted.

Around this time, far too many projects were failing as the size and

scopes of projects increased along with the complexity of source files and

related libraries. From Dijkstra’s ACM Turing Award lecture, an analogy is

made for the necessity of SE processes [35]:

9

www.manaraa.com

“As the power of available machines grew by a factor of more than a
thousand, society’s ambition to apply these machines grew in propor-
tion, and it was the poor programmer who found his job in this ex-
ploded field of tension between ends and means. The increased power
of the hardware, together with the perhaps even more dramatic in-
crease in its reliability, made solutions feasible that the programmer
had not dared to dream about a few years before. And now, a few
years later, he had to dream about them and, even worse, he had
to transform such dreams into reality! Is it a wonder that we found
ourselves in a software crisis?”

Edsger W. Dijkstra,

1972

SE specifies how to approach the development of large projects. This in-

cludes aspects such as the development methodology followed, the gathering

of project requirements, the specification of appropriate test cases and user

acceptance tests, deadlines and project milestones, contingency plans, and

the design and development phases. While no SE methodology can guar-

antee a successful outcome, adhering to the accepted codes of best practice

helps minimise the effects of factors such as changing project requirements,

incomplete specifications and unforeseen development delays.

The Software Development Life-Cycle

A powerful model to abstractly represent the process of software development

is presented by Zelkowitz, Shaw, and Gannon [122] in Figure 2.1. This model

shows how SE takes a real-world problem, derives a solution based on abstract

analysis, and delivers a final and tangible working product in the form of

software.

As Zelkowitz’s model is a general one, it does not make reference to the

specific development factors that must come into consideration when engi-

neering software. Core factors of any SE project include source files and ver-

sioning, programming languages used, product versions and branches, teams

for each development phase, and the development methodologies followed.

These aspects are discussed further within the context of CSE in Chapter 4.

Evolution within SE processes is becoming increasingly important. Due

to large frameworks and libraries, component-based SE, and programming

10

www.manaraa.com

Figure 2.1: The lifecycle of software development [122].

languages that encourage reuse and ‘programming by difference’, it is com-

monplace for applications to be refactored, redesigned, reused and even

merged with other products. Figure 2.1 has therefore been enhanced with an

additional evolution phase, which indicates that implementations may simply

represent the end of one iteration of the cycle.

Some types of SE artifacts are specific to certain phases of Zelkowitz’s

model. For example, requirements documentation is typically formed exclu-

sively during the analysis phase, as it is likely to be used only as reference

material for the remaining phases. For other artifacts such as class diagrams,

they might be used for several or all phases of the model during any given

iteration.

2.1.2 Software Engineering Methodologies and Processes

Many SE processes and methodologies exist and are in mainstream use today.

Processes range from the more prescriptive, such as the Waterfall process [96],

to the highly adaptive, such as eXtreme Programming (XP) [7]. Hybrid

approaches also exist, such as the Rational Unified Process (RUP) [62], where

both prescriptive and adaptive practices are followed. While all currently

used processes predate CSE tools, the XP process does accommodate pair-

11

www.manaraa.com

programming, where groups of two programmers work together on the same

input device.

As well as processes and methodologies, many types of programming

languages are in use today. These include procedural programming where

the program follows a predefined sequence of instructions, Object Oriented

(OO) programming where small units of code react to events, and functional

programming where complex results are obtained through the chaining of

multiple function calls.

The processes and types of programming languages employed within a

project directly affect the software in various ways, including the ability

to adapt to changing requirements, the degree of clarity when determining

project milestones, and the partitioning of development teams.

2.1.3 Software Engineering Artifacts

Artifacts are central to the SE process. Here, a discussion is presented on

how collaboration during artifact modification is supported by conventional

SE tools and practices.

Project Branches and File Versions

For any realistically-sized software project, it is likely that multiple versions

of its founding source files are stored within a source code repository system.

This is regardless of the number of programmers employed or development

methodology followed. By branching, as illustrated in Figure 2.2, minor

modifications to files within a previous release of an application can be made

immediately upon request, regardless of the compilation state of the current

version of the project. Such changes can then be integrated into the main

product trunk once the main version is in a compilable and stable state,

instead of attempting to rush the construction of the current project version

which also incorporates the newly requested modifications.

Branching, where a complete set of project files is duplicated for an al-

ternate stream of development, does not necessarily have to be undertaken

within a software project. Within a single development trunk, however,

source code repository systems will still checkpoint sequential versions of

12

www.manaraa.com

Figure 2.2: A typical revision history tree for a software project.

all project files; typically this is done automatically upon each commit of

modified files back into the central repository. Accordingly, it is important

to realise that source code repository systems have the ability to produce a

previous version of any file, possibly replacing the current version if required.

Given that multiple branches of a project may exist, and that each file

within a branch has a potentially large number of previous versions, the focus

is now turned to the lifecycle of a file in the context of a single version.

File Merging

Any given version of a single file may be modified by several developers

concurrently. When using conventional SE tools, files are typically shared

through the idiom of copy, modify and merge [9]; each user obtains a copy of

the current version of the file, makes their modifications, and once all changes

have been made, the set of modified files are merged into one single newer

version.

A single version of a file may undergo complicated concurrent changes.

Using Figure 2.3 to illustrate, a change in area A poses no likely modification

problems. For regions B and C, however, it is highly likely that any concur-

rent changes will conflict when merging takes place. Even if the syntax of

the two changes do not directly interfere with each other, it is likely that the

lexical closeness of these changes will still cause a merge conflict, where a

new version of the file is not able to be formed automatically.

The process of file merging is normally performed on a character–by–

13

www.manaraa.com

Figure 2.3: Artifact modifications within a software project.

character basis, where no effort is made to analyse the syntax or semantics

of the modified source files. Once concurrent modifications for a source file

have been merged into a new version, the resultant file is committed into the

main repository and distributed to all developers.

Merging is not a trivial process, however. Even the very latest auto-

matic file merging tools fail to resolve all but the most simple of file merging

tasks [70]. This leaves the task of correcting changes that conflict to the

developers, which can be a painstaking and time consuming process.

Transactional Conflicts

It is evident that the lifecycle of any given artifact within a project is complex.

Independent of within-file merge conflicts, a further problem exists during the

concurrent modification of a set of files. This issue, which can be termed a

transactional conflict, occurs when a modified file, while syntactically valid,

causes the project build to inevitably fail due to a broken code dependency.

An example of a transactional conflict, where the project became uninten-

tionally incomplete at a semantic level, was presented in Section 1.1. Within

conventional tools, users will not detect transactional conflicts until all the

14

www.manaraa.com

new versions of the modified files are merged with the central repository and

a project rebuild is attempted.

Transactional conflicts can be considered at the scope of project level

rather than at file level. When discussing artifact lifecycles, however, it is

important to realise that transactional conflicts have an impact on artifacts—

the artifacts involved require subsequent modification to enable the project

to build again, even if this means reverting to a previous version of the file.

2.2 The Significance of Collaboration

SE is undoubtedly a collaborative process. It involves the concurrent editing

of multiple artifacts by many teams of software engineers through a series

of development stages, across multiple product lines. The artifacts of soft-

ware, such as source code, will be heavily shared during the project’s design,

implementation, testing, refactoring and maintenance.

2.2.1 Collaboration Defined

Before discussing the significance of collaboration in detail, a definition of

collaboration within the context of this thesis is defined. For many SE pur-

poses, collaboration is a term that can be used loosely to indicate any form

of interaction between related software producing organisations. In terms of

this thesis, however, CSE is defined as the practice of developing a specific

software product within a team of closely related developers.

Working collaboratively, therefore, encompasses regular meetings, divi-

sion of labour, regular code integration, and ongoing communication and

interaction between programmers during the development lifecycle. Devel-

opers within a project can be co-located or distributed, but they will work

on the same set of artifacts—possibly the same artifacts at the same time.

2.2.2 Project Life-Cycles

The nature of project lifecycles implies that human interaction is necessary

and unavoidable, both within and between groups of developers. The leverage

of expertise from others is important, which is normally facilitated by face-to-

face meetings. Regardless of the location of individuals, all developers must

15

www.manaraa.com

communicate with each other on a regular basis to communicate, coordinate

and collaborate in order to analyse, design, implement and test the software

under development.

The ability to collaborate during software development is essential even

when working on a well-structured single-person project. Collaboration does

not just involve connecting people; collaboration between files, versions and

tools is equally as important. A programmer in isolation can still benefit

from tools that understand the actions of other tools, and recognise the inter-

relationships within constantly-changing source files and other artifacts. The

ability to collaborate between tools, even by a single developer, is becoming

increasingly important as the size and complexity of software projects grow.

Within team development, groups of software engineers need to be able to

share files, modify them, re-integrate them with the main source code repos-

itory and resolve any errors that result from concurrent conflicting changes.

To avoid significant complications when re-integrating code with the global

repository, each developer needs to be aware of the impact that his or her

changes will have on other parts of the system. Particular attention must be

paid to the parts that are being edited by other developers at that point in

time.

To assess the impact of changes before they happen, the actions and inten-

tions of others must be identified. The sooner these aspects are made known

to the developer the better; if programming conflicts between developers can

be detected early they can be resolved early [99], or avoided altogether.

2.2.3 Conventional Support for Collaboration

At present the support for collaboration within SE is limited. Conventional

SE tools appear to be designed around the premise that developers are co-

located, well aware of the current actions of other programmers, and use

social protocols such as source file ownership and regular integration periods

to prevent significant modification conflicts [51].

Unfortunately, SE practice today often falls beyond the desired character-

istics listed above. Developers are often distributed rather than co-located,

are not constantly coordinated with other users within the group, and often

16

www.manaraa.com

work on copies of the same source files concurrently—particularly within the

open source community where developers have a great deal of freedom in the

construction of software.

Face-to-face communication is the richest way to communicate with oth-

ers [103]. Accordingly, within a close team of co-located developers, face-

to-face communication on a daily basis is both desirable and commonplace.

For development scenarios where face-to-face communication is not possible,

mailing lists and email correspondence are typical substitutes [51].

Face-to-face meetings occur within most co-located software development

teams on a daily basis, regardless of the SE process followed. Such meetings

are typically held to discuss problems resulting from the nightly build, or

perhaps to assign tasks to pairs within the XP process. Conference calls

within distributed teams is common practice, typically upon completion of

milestones or immediately prior to a critical phase such as a re-division of

labour. Instant messaging between developers regardless of physical location

is also commonplace today for low-level interaction, such as determining the

current activities and intentions of co-workers.

For very well coordinated teams, communication through electronic means

and careful use of a code repository system to implement file sharing has been

shown to produce some successful projects [51]. There are, however, many

trade-offs to this approach including the need for expert software engineers,

a slow product delivery rate, a closed development group and a long learning

period for any newcomers accepted as code contributors.

For most development groups, however, it is problematic deriving infor-

mation about the actions and intentions of others from single-user develop-

ment tools, email correspondence and mailing lists. Source control systems,

such as CVS, provide some features to alert users to conflicting actions such

as a file being checked-out by other developers. The authors of CVS state

however: “CVS is no substitute for communication” [9]. This is particularly

true for non-expert groups, where developers often spend large amounts of

their time addressing problems that are only exposed during the code inte-

gration stage.

17

www.manaraa.com

Limitations of Conventional Collaboration Support

It appears that communication and collaboration are unduly restricted within

most teams of software engineers. This is evident from the integration prob-

lems common to most projects as documented previously [86]. The research

within this thesis is based on the perception that the current level of support

for collaboration within conventional tools is unacceptably low.

The research in this thesis favours the approach of detecting errors as early

if possible—to the point where they may in some circumstances be avoided

altogether—which is not possible with conventional SE tools. Furthermore,

the current repository-based model of copy, modify and merge is troublesome;

conflicting changes made by others are only exposed upon code integration,

and feedback information is restricted to code repository response codes and

build reports.

It is possible to envisage CSE tools where the facilitation of discussions is

commonplace, and such discussions are initiated as changes are being made.

At present, this is difficult to achieve due to very limited tool support; con-

ventional tools can provide feedback related to the current developer’s mod-

ifications, but they do not account for any changes being made concurrently

by other users within the project.

Figure 2.4 illustrates the cost of correcting errors as they occur during

different phases of the development lifecycle [102]. The vertical axis on this

figure represents the relative cost of correcting errors per phase, which could

be measured in dollars or man-months. More recent research of contemporary

software development concludes that “uncorrected defects become exponen-

tially more costly with each phase in which they are unresolved” [118]. Given

that it is important to discover errors as early as possible, again it is appar-

ent why tool support at present is inadequate—small but critical changes

are often not discussed until problems are exposed during final testing, and

current code integration practices mean that even easy-to-detect errors such

as merge and transactional conflicts may go unnoticed for days.

18

www.manaraa.com

Figure 2.4: The cost of correcting errors across the development lifecy-
cle [102].

2.2.4 The Progression of Software Engineering

To support the progression of SE, tools must support higher levels of code

understanding. Without such support, development is likely to become stifled

as programs and programming languages become even more complicated and

inter-related.

Projects will continue to rise in complexity as software becomes increasing

heterogeneous and libraries continue to add more globally accessible, com-

plicated classes. While many professional Integrated Development Environ-

ments (IDEs) provide comprehensive support for code and library browsing

within a single instance of a set of source files, no facilities are dedicated

to the analysis of the relationships between developers as they work within

their project work-spaces.

To increase programmer productivity, the code repository idiom of copy,

modify and merge must be replaced with a more efficient means of file sharing,

particularly in cases where this idiom is used as a basis for communication

between developers. Even if developers work on separate source files during

19

www.manaraa.com

a development phase, the isolated nature of current software development

tools implies that conflicting changes between files are still likely to be made,

and will not be detected until the integration stage.

The progression of SE is the motivation behind the research of this thesis.

A possible path of progression for SE is presented in Figure 2.5. Tools are

proposed that operate on a shared semantic model of software, where modifi-

cations are made to the corresponding single, shared and central repository of

artifacts in real time. Given such a shared semantic model and real time ac-

cess, it is possible to immediately calculate the impact of proposed or actual

changes and provide user proximity information between sets of collaborating

developers. Instead of making course-grained commits to a code repository,

perhaps at the level of multiple files at a time after several days’ worth of

development, systems can be envisaged where code modifications are real

time atomic operations without any need for duplication of artifacts.

Collaboration of this proposed nature is beginning to take place within the

field of SE. The XP process of daily meetings and regular rotation of tasks to

leverage and share knowledge provides a degree of collaboration unobtainable

by most other development methodologies. Additionally, the XP practice of

pair-programming supports the shared development philosophy promoted in

this thesis, albeit restricted by the limited capabilities of current technology

for collaborative programming.

Agile Methods [24] are also becoming increasingly popular within SE

teams. The Agile process focuses on producing deliverables frequently by

having groups of limited numbers that work on small units of development.

This type of development process is well-aligned with the principles of CSE

and their associated patterns of collaboration (as described in Chapter 3).

Therefore, as the popularity of Agile Methods increases, so too will the de-

mand for Agile Methods-aligned CSE development tools.

A key aim of the research presented in this thesis is to promote collaboration-

based SE through better tool support. From the perspective of Agile Methods

and XP, the research in this thesis may allow these team-focused processes

to scale from small subsets of collaborative developers to a completely col-

laborating team. This can only be achieved, however, once enabling tools

and technologies are available.

20

www.manaraa.com

Figure 2.5: Perceived evolution of software engineering.

21

www.manaraa.com

2.3 Defining Real Time Collaborative Software Engineering

Almost all modern SE methodologies involve several distinct groups of peo-

ple. They work on many artifacts with different types of tools, producing

multiple versions of software products. SE is unavoidably collaborative. Ac-

cordingly, research into real time CSE investigates ways of lending computer-

based support to assist programmer and tool communication, management

of artifacts, and coordination of tasks.

Practical support for CSE at the moment is little more than tool sup-

port for CVS plus simple communication facilities such as email and instant

messaging. As described previously, tools for CSE can be envisaged that

have the potential to raise collaboration to a higher level. Such tools make

the separation of users less obvious, giving an impression of working on one

shared software project.

In defining CSE, research and development efforts should not be restricted

only to real time collaboration. Often programmers will not work at the same

time, due to other obligations or even time zone differences. Any CSE tool

or architecture must be able to support both synchronous and asynchronous

modes of development to be genuinely useful.

Similarly, the research in this thesis advocates the development of tools

and architectures that allow CSE to be practiced in both co-located and

distributed settings. Development by two programmers working on the same

workstation should be supported if that is what a given methodology requires,

such as pair-programming. Large degrees of physical separation should also

be no obstacle for CSE. The ultimate goal of CSE research could aim to

make collaborative work no different whether workstations are separated by

an office partition or a hemisphere.

Within this thesis, real time CSE is defined as: A field of research that

investigates platforms and technologies to support the development and use

of synchronous SE tools for a range of tasks, programming languages, SE

processes, physical settings and team sizes. The goal is to explore and realise

the perceived benefits and the full potential of CSE.

22

www.manaraa.com

Identifying Related Research Fields

After considering the main aspects of team development, it is apparent that

for the successful implementation of CSE tools, knowledge of several related

disciplines of computer science is required. While an understanding of core

SE aspects is important, other topics that must be addressed include hu-

man factors and usability, source code control systems, distributed systems,

Groupware and CSCW, and software visualisation. As illustrated in Fig-

ure 2.6, CSE forms an intersection of these overlapping areas.

Figure 2.6: The disciplines associated with CSE.

2.4 Research Related to Collaborative Software Engineering

The following section presents a discussion on the areas of related fields of

research identified within the diagram of Figure 2.6. A claim is not made

that CSE research is at the core of each related discipline, but an assertion of

the research in this thesis is that each of the above areas is key in supporting

and enabling successful CSE tools and frameworks. References to pertinent

papers from all related research fields will be made in the subsequent chapters

of this thesis. For a comprehensive listing and further discussion, please refer

to the annotated bibliography contained in the accompanying resources disc.

23

www.manaraa.com

2.4.1 Software Engineering Processes

SE is a very practical area within the discipline of computer science. As

such, the theories related to SE are often produced empirically by observation

of practicing software engineers and the induction of facts, rather than by

deduction and proofs.

Due to the large range of tasks within SE and the considerable amount of

variance in methodologies, team dynamics and duties to be performed, it is

difficult to perfectly map what happens within SE projects to a set of rules

and processes. Consequently, many of the highly cited articles related to

SE are chapters within books that provide an overview of an entire process,

rather than scientific conference and journal papers that focus on highly

specific topics.

There are many tools available to the software engineer. At one end of the

spectrum, well designed simple tools, such as text editors, have widespread

use and popularity, particularly for hobbyists or individuals working on small

software projects. At the other end of the spectrum, more complex Computer

Aided Software Engineering (CASE) tools that incorporate code editors, di-

agrammers, source code control interfaces, workflow components and debug-

gers are available. Tools and technologies of this nature, such as FIELD [94],

PCTE [13], Eclipse [83] and Visual Studio [72] are often well suited to large

teams of software engineers, where numerous procedures and methodologies

that require tool support are likely to be in place.

Conventional Software Development Environments

Over the last two decades, many IDEs have been used within software devel-

opment teams. Examples of popular environments today include Microsoft’s

Visual Studio [72], Borland’s JBuilder [12] and Eclipse [83]. One of the

earliest IDEs which is considered to be seminal within the field of CSE is

FIELD [94], due to its ability to support numerous distinct SE tools via a

clearly defined message passing interface. While not originally cited as a CSE

platform, FIELD was one of the first projects to address tool interoperability

and basic analysis of source code.

A similar research project was the Portable Common Tool Environment

24

www.manaraa.com

(PCTE), which again defined interfaces for sharing data between SE tools

and underlying components of the host operating system [13]. PCTE is

based on relational databases, using fine-grained relational data models as

the authoritative source of tool information interchange.

2.4.2 Groupware and Cscw

SE is a team activity; cooperation between individuals is essential. Group-

ware, the class of software that enables local and remote users to collaborate

via networked computers, provides only limited support for SE. As the inter-

action between software engineers is often complex, and SE is predominantly

artifact based, few computer supported cooperative tools for SE exist.

Groupware and CSCW are areas that clearly lend themselves to CSE tools

and research. With Groupware technologies, user interfaces for simple tools

can be replicated and shared in real time by multiple users. In theory, such

technology can be directly applied to assist the development of multi-user

SE tools.

Conventional applications constructed through Groupware are typically

tools such as shared white-board editors, chat facilities, and map and graph

browsers. The CSE researcher must be aware, however, that for compli-

cated applications such as SE tools, Groupware has its limitations that are

of particular concern for CSE tools. These limitations are discussed in Sec-

tion 2.6.1.

Programmable Toolkits

Programmable Groupware toolkits are used to rapidly construct CSCW ap-

plications using common multi-user components. An example of such a

toolkit, MAUI [55], is presented in Figure 2.7. Essentially, programmable

Groupware toolkits are all that developers require to facilitate communica-

tion between a group of distributed applications unless highly specific net-

working or collaborative features are to be supported.

Typical components within Groupware toolkits include shared text ed-

itors, chat facilities, sketch-pads, voting facilities and mechanisms to sup-

port group membership, connection and disconnection. Some programmable

25

www.manaraa.com

Figure 2.7: The MAUI Groupware toolkit [55].

toolkits, such as GroupKit [95], also provide comprehensive floor control poli-

cies; for the remainder, all concurrency control must be implemented by the

application developer.

Desktop Systems

Desktop CSCW systems are designed to support general work-flow and col-

laboration without the need for customisation or special tool development.

They are monolithic systems that allow common applications, documents

and data sets to be shared. A key distinction between desktop systems, such

as Lotus Notes, and other types of Groupware is that desktop systems do

not normally support synchronous collaboration.

An example of a desktop system is Microsoft’s SharePoint Server [71], as

illustrated in Figure 2.8. In this figure, a Word document is being edited by

a member of an office team, with options to check it back in to a document

store, receive alerts when others edit it, and retrieve previous versions. The

file sharing mechanism employed is very similar to CVS.

26

www.manaraa.com

Figure 2.8: Microsoft’s SharePoint desktop collaboration system [71].

Desktop systems are useful for general work-flow contexts such as doc-

ument editing and project scheduling, but do not lend themselves directly

to most SE tasks. This is because SE artifacts are highly constrained in

terms of semantics, undergo frequent concurrent modifications throughout

the team, and have many inter-relationships between documents. Desktop

systems do however provide a good illustration of how CSCW technologies

can be applied to facilitate computerised structured teamwork.

2.4.3 Source Code Control Systems

Source code control systems such as CVS [9] and SubVersion [25] are core

to SE. These systems enable the versioning, branching and management of

SE artifacts to ease the burden of producing multiple versions of software

products derived from the efforts of potentially hundreds of developers.

27

www.manaraa.com

Even for single user projects, the benefits gained from source code con-

trol systems, including the ability to roll-back changes, make the use of such

systems warranted and valuable. Source code control systems also attempt

to keep source files coordinated as they evolve by allowing regular check-ins

and project builds. Without such facilities, it is possible for individual cod-

ing efforts to skew the project into several separate and hard-to-consolidate

directions.

Source code control systems address the fact that many people may be

working on the same code base, and that often several developers will want to

work on the same source file. To facilitate controlled file sharing, two schemes

are typically employed: file locking or file copying and subsequent merging—

and both approaches have their advantages and disadvantages. Regardless

of the issues surrounding the use of source code control systems, they are

a fundamental component for most SE tools, both collaborative and single

user.

2.4.4 Human Computer Interaction

The area of Human Computer Interaction (HCI) is active with large volumes

of research papers being generated each year. Such papers typically present

small-scale evaluations where problems are isolated into a simplistic form.

This is a scientifically correct and well-accepted practice, but unfortunately

for the purposes of CSE research, such studies can at times be too trivial.

Research into SE requires an acceptance that tools are complex and artifacts

are numerous, and that simplification can yield results that are not significant

in ‘real world’ terms.

CSE tools can be more ambitious in design and harder to evaluate than

the tools studied within HCI. Many HCI papers that address CSE only

assess programming within isolated environments, such as spread-sheeting

tools [77]. Therefore, the CSE researcher needs to be aware that HCI studies

may not necessarily scale to realistic SE scenarios—often the papers are only

useful for general guidance related to CSE experimental design.

The effectiveness of awareness mechanisms is an area of great importance

to CSE tools. Some results from previous HCI studies will be useful for

28

www.manaraa.com

CSE tool development, but CSE researchers will certainly have to extend

the current base of HCI knowledge as CSE progresses.

2.4.5 Distributed Systems

In terms of providing facilities for interprocess communication, Groupware

technology can offer basic distributed communication support. For the trans-

port of application specific data, or for where more complex and efficient

systems are to be supported, then a distributed systems technology may be

the only answer to the support of CSE tools.

Distributed systems aim to make the boundaries between computers invis-

ible, a term often referred to as global or ubiquitous computing. Distributed

systems provide facilities to support client/server, pair-to-pair and grid com-

puting architectures. For the development of CSE tools, distributed systems

allow tools to communicate with each other, send and receive custom data,

access peripheral servers, and make calls to remote functions and methods.

Distributed systems technology has made significant advances in the last

few years, particularly with the introduction of .Net [20], J2EE [65], SOAP [74]

and related web services, all of which are explained in the accompanying an-

notated bibliography. Due to these advances, it is possible to implement very

comprehensive collaborative features within CSE tools, with functions more

advanced than those typically supported in conventional Groupware toolk-

its. Additionally, with the advent of the Internet and wireless networking,

the physical boundaries of computer networks are diminishing, allowing CSE

tools to be supported far further than just the local network.

2.4.6 Software Engineering Metrics and Visualisation

The field of software metrics and visualisation concentrates on the analysis

and extraction of useful metrics from software projects. Findings are then

presented back to engineers in a way that is useful and minimises information

overloading. An example system, JST [60] provides a transparent pipeline

which uses a standard language grammar and source files as the input, and

provides rich program visualisations and associated software metrics as a

result. A class cohesion visualisation from JST is presented in Figure 2.9.

29

www.manaraa.com

Figure 2.9: A visualisation of class cohesion using the JST pipeline [60].

For CSE research, the field of software metrics and visualisation is imme-

diately interesting: the metrics gathering and reporting are a core function

of most CSE tools. Additionally, many CSE tools now employ visualisations

of user activity as their main mode of feedback. As SE becomes more collab-

orative, visualisations may become even more important to the developers of

CSE tools; the additional dimension of multiple users and their interactions

with artifacts over time provides rich information for the software team.

It should be noted, however, that the most effective modes of visualisation

for both standard and collaborative SE tools are yet to be fully investigated

by software visualisation and HCI researchers [53]. Alternatives to common

interfaces such as explorer panes and tree views are likely to be necessary as

richer types of information are displayed.

2.5 Previous Work Towards Collaborative Software Engineering

This section presents an overview of previous work towards CSE. For a more

in-depth listing and discussion of the related literature, please refer to the

annotated bibliography contained in the accompanying resources disc.

2.5.1 Overview

Research into CSE is progressing rapidly. Driving factors for this current

surge of research include the advent of industrial-strength open source IDEs,

30

www.manaraa.com

a solidification of standards for distributed computing, significant advances in

processing speeds and memory capacities, and more powerful, interoperable

programming languages. Reliable high-speed networking reduces the bound-

aries between remote developers, programming frameworks such as .Net and

J2EE provide efficient access to rich information related to any given soft-

ware project, and new collaborative features can be incorporated into IDEs

through open Application Programmer Interfaces (APIs).

SE encompasses a wide range of tasks ranging from requirements outlining

to code debugging, and researchers are now beginning to develop prototype

CSE tools for every conceivable task. At the time of writing, a handful

of commercial CSE tools also exist for relatively simple SE tasks, and the

research world is constantly publishing new and novel architectures, tools and

perspectives related to CSE. Researchers have implemented collaboration-

based prototype tools using existing SE frameworks, Groupware toolkits, and

manually from a blank starting point.

Tools are now available which support real time modelling, design and

management of software. Development tools, however, are typically based

upon conventional SE tools and technologies. For example, as developers

check-in or check-out source code from a central repository, users can be

alerted to possible conflicts. Only a few real time editing and diagramming

tools exist, where the conventional model of copy, modify and merge is re-

placed with fully synchronous file sharing with multiple view support.

The remainder of this section highlights each category of tool. At the end

of this section, a feature matrix is presented that compares these existing CSE

tools with Caise-based tools.

2.5.2 Design Tools

CSE design tools have some or all focus on supporting collaboration during

the design of SE artifacts. CSE design tools focus on work-flow, commu-

nication and basic source file generation rather than on low-level coding.

Tools within this category typically support the design of relatively simple

and low-detailed artifacts such as class, sequence and Class-Responsibility-

Collaborators (CRC) diagrams.

31

www.manaraa.com

Other Unified Modelling Language (UML) diagrams such as state tran-

sition diagrams and use-case diagrams appear too complex to be supported

by CSE design tools at present, although a few limited commercial imple-

mentations of such tools have been recently released, such as Poseidon for

UML Enterprise Edition [11], presented in Figure 2.10. Poseidon supports

shared UML modelling, with locking if required and a conflict detection and

resolution facility. Additionally, while not shown in the current screen-shot,

Poseidon also supports a shared white-board facility and instant messaging

between developers.

Figure 2.10: The Poseidon collaborative UML tool [11].

For web-based shared UML editing, Rosetta [48] is a well known research

prototype. The Rosetta architecture allows editing of HTML-based software

design documents from the Internet, with embedded UML diagrams. An

32

www.manaraa.com

editor applet allows collaborative editing of UML diagrams, as presented in

Figure 2.11. Rosetta also supports code conformance tests, where source code

is compared against its design documentation for possible inconsistencies.

Figure 2.11: The Rosetta web-based collaborative design document tool [48].

2.5.3 Development Tools

Many specific and ambitious prototype tools exist to accommodate a range

of development tasks. For distributed eXtreme Programming a new frame-

work called Moomba has been released [92]. The Moomba environment for

distributed XP is presented in Figure 2.12. Moomba facilitates the daily

activities of XP in a collaborative manner, where user stories and other XP

artifacts can be shared and modified by multiple uses. Moomba also supports

a fully-featured IDE for shared collaborative editing, which includes syntax

highlighting, code completion, build and collaborative debugging support.

Moomba is the successor to Tukan, a CSE tool for SmallTalk editing [100].

The Tukan system is presented in Figure 2.13. Tukan supports editing of

source files, but code changes are not propagated to other users; instead

33

www.manaraa.com

Figure 2.12: The Moomba collaborative XP development environment [92].

Tukan provides real time awareness of other users’ presence and their per-

ceived potential to make conflicting changes. In Figure 2.13, Tukan’s col-

laborative code indicators are visible, which convey degree of interest (DOI)

information and potential configuration issues between programmers.

In the last year many of the major commercial IDEs have also taken

significant steps towards code-level real time collaboration. Of the five Java

IDEs that have the largest market shares, two of them now support shared

development facilities, and all five environments are promising more to come

in the next major releases.

Eclipse [83] is arguably the most popular development environment for

Java, and has the support of many of the industry’s largest corporations.

While Eclipse itself does not support code-level collaboration, a new sub-

project called the Eclipse Communication Framework [66] aims to allow the

Eclipse code repository and project model to be shared and collaboratively

edited. The API to perform basic sharing is available now, along with some

prototype client applications. Such an application is presented in Figure 2.14,

where a shared graph editing tool is hosted within the Eclipse IDE.

34

www.manaraa.com

Figure 2.13: The Tukan collaborative code editor [100].

Figure 2.14: A graph editing tool within the Eclipse Communication Frame-
work [66].

35

www.manaraa.com

Borland’s JBuilder [12], as presented in Figure 2.15, is another of the

main IDEs in the Java development market. It supports real time remote

refactoring, distributed views of UML diagrams, and chat channels. At the

time of writing, the latest version incorporated a shared pair-programming

code editor and collaborative debugging capabilities, although this has been

implemented with a rather restricted token-passing floor control policy where

only one user can make modifications at a time.

Figure 2.15: Borland’s JBuilder IDE with pair-programming capabilities [12].

Similarly, Sun’s JSE [115] now supports a collaborative code editor, with

more plans on the way for the next release. There are also collaborative plug-

ins available for Oracle and Rational’s IDEs, bringing them into the market

for code-level collaborative development tools.

36

www.manaraa.com

2.5.4 Inspection Tools

CSE inspection tools typically support one of two functions: allowing users to

collaboratively inspect code and designs as a group, or allowing single users

to inspect code and designs that have been collaboratively developed. Inspec-

tion tools differ from management tools in that their key role is the inspection

and investigation of SE artifacts for the benefit of future development and

refinement, as opposed to management tools that are more concerned with

group coordination, high-level design and artifact control.

An example of a popular inspection tool is Augur [41], as illustrated in

Figure 2.16. Augur is a comprehensive tool for inspecting and exploring soft-

ware development activity. Augur consists of a data gathering architecture

based on semantic analysis of source code repositories and a set of visualisa-

tion tools. These tools allow developers to monitor their activity and explore

the distribution of their combined activities over time and artifacts.

Figure 2.16: The Augur inspection tool [41].

For change impact reporting the Palant́ır architecture exists [98]. Fig-

ure 2.17 presents Palant́ır’s visualisation component, which informs devel-

37

www.manaraa.com

opers of potentially conflicting source file check-outs from code repositories.

The goal of Palant́ır is to raise awareness of currently isolated programmers.

Figure 2.17: The Palant́ır collaborative visualisation tool [98].

2.5.5 Comparison to Caise-Based Tools

Before presenting the Caise framework and associated tools, it is worth-

while comparing the features and abilities of existing CSE tools. The CSE

tools presented previously in this section are categorised in Table 2.1. The

categories used to summarise these tools are explained further in Section 4.2.

With reference to the feature matrix presented in Table 2.1, it is apparent

that CSE tools vary in the number of core features supported. This is to be

expected, as CSE tools are tailored for specific purposes and do not generally

need to support all SE tasks. Being collaborative and written without the

use of supporting frameworks, however, guarantees a high implementation

cost for these tools, yet they are not generally as powerful as all-purpose

single-user SE tools such as IDEs.

In the design of the Caise framework, a key objective is to be able to

provide as many core CSE features as possible for application developers to

utilise. Instead of writing tools for all purposes of CSE, the research pre-

sented in this thesis aims to provide a framework to support rapid CSE tool

38

www.manaraa.com

T
oo

l
E

xt
en

si
bl

e
Sy

nc
hr

on
ou

s
M

ul
ti

pl
e

L
an

gu
ag

e
Su

pp
or

t

M
ul

ti
pl

e
V

ie
w

s
of

A
rt

ifa
ct

s

Se
m

an
ti

c
M

od
el

lin
g

U
se

r
P

re
se

nc
e

Fe
ed

ba
ck

Im
pa

ct
R

ep
or

ti
ng

Su
pp

or
te

d
P

ha
se

s

T
uk

an
✕

✓
✕

✕
✓

✓
pa

rt
ia

l
im

pl
em

en
ta

ti
on

P
os

ei
de

n
✕

✓
✓

✓
✓

✓
✓

de
si

gn
M

oo
m

ba
✕

✓
✕

✕
✓

pa
rt

ia
l

pa
rt

ia
l

im
pl

em
en

ta
ti

on
P
al

an
t́ı

r
✕

pa
rt

ia
l

✕
✕

✕
✓

✓
im

pl
em

en
ta

ti
on

R
os

et
ta

✕
pa

rt
ia

l
✕

✕
✕

✕
pa

rt
ia

l
de

si
gn

E
cl

ip
se

✓
pa

rt
ia

l
✓

pa
rt

ia
l

✓
no

t
ye

t
pa

rt
ia

l
im

pl
em

en
ta

ti
on

A
ug

ur
✕

✕
✓

✕
pa

rt
ia

l
✕

✕
im

pl
em

en
ta

ti
on

C
a
is

e
-

ba
se

d
to

ol
s

✓
✓

✓
✓

✓
✓

✓
de

si
gn

&
im

pl
em

en
ta

ti
on

T
ab

le
2.

1:
F
ea

tu
re

m
at

ri
x

of
ex

is
ti

n
g

C
S
E

to
ol

s.

39

www.manaraa.com

construction. Given Caise, CSE tools will have the potential to successfully

support all of the categories listed in the feature matrix presented above by

utilising the framework’s services.

The key differences between the Caise framework and other types of

CSE tools are that Caise-based tools are easily extensible through clearly

defined APIs, have access to rich project information via a shared incremental

source code semantic analyser, and tools are fully synchronous in which any

number and types of tools can collaboratively edit artifacts in real time, even

from different artifact views. In Chapter 6, a discussion on how to rapidly

implement new Caise-based CSE tools is presented.

2.6 Collaborative Software Engineering Barriers

Some of the original claims made in CSCW and Groupware literature in-

cluded assertions that collaborative applications showed great potential to

become commonplace. Today, however, it is still a daunting task to im-

plement collaborative tools for SE purposes. Many areas of expertise are

required, and industrial-strength tools have many facets that must be suit-

ably supported. This section presents a discussion on the barriers to the

support of CSE and associated tools.

2.6.1 Groupware Support

The literature surrounding CSCW originally spoke of solving many prob-

lems related to computerised collaborative work [49], which suggests that

CSE tools would be trivial to implement once technology had naturally pro-

gressed. Unfortunately, twenty years on from those claims, we are still no

further to having a ‘silver bullet’ technology that facilitates CSE or any other

complicated domain. The failures of ambitious CSCW projects within other

fields are now well documented [50].

Groupware toolkits such as GroupKit [95] and Maui [55] allow the sharing

of files, whiteboards and other common forms of electronic media, and good

results have been achieved when converting some generic applications to their

multi-user equivalents [33]. Extending Groupware to specific CSE applica-

tions has been trialled elsewhere with varying degrees of success [100, 22].

40

www.manaraa.com

Problems occur, however, when building industrial-strength CSE tools

from Groupware toolkits. Professional tools are not limited to a single task,

language or artifact view, and this is orthogonal to the characteristics of

Groupware. CSCW technology is based on the support of unstructured and

transient documents that have little or no semantic relationship to other

artifacts. SE involves highly structured, evolving documents that have vast

inter-dependencies and long lifetimes, but Groupware technologies have no

understanding of the complex semantics or syntax of such artifacts, and the

relationships between artifacts and users.

An attempt could be made to extend a single-user IDE collaboratively

through the use of a CSCW toolkit, allowing it to support distributed col-

laborative development of code or UML diagrams. A significant difficulty,

however, is that conventional SE tools are designed for single-developer use,

and appending collaborative features to single-user tools does not necessarily

scale or provide the level of improvement envisaged.

2.6.2 Building Industrial-Strength Tools

While the proposal of tools to support CSE often draws an enthusiastic

response from practitioners, the design and implementation of industrial-

strength tools is a challenging task; very few research prototypes have evolved

into features within professional tools. Even once such tools have been de-

veloped, there is no guarantee that they will gain widespread adoption.

Implementing collaborative features for industrial-strength tools is a very

challenging problem. To date, SE tools typically work with the lowest com-

mon denominator of SE artifacts: source code. By employing source files as

the finest-grained type of shared information, and by supporting information

sharing only through code repository systems, it is difficult to extend IDEs

to support real time within-files collaboration, to provide support for multi-

ple views of software, and to provide collaborative access to the underlying

semantic model of software for tool extensibility purposes.

Given that CSCW technology does not scale to meet the needs of CSE,

and IDEs do not provide enough fine-grained information to support the

development of highly-synchronous new types of collaborative tools, often

41

www.manaraa.com

the only means of producing new collaborative tool sets is by completely

redesigning tools upon a foundation of CSE technology.

Summary

In this thesis, an approach to supporting CSE in a practical and extensible

way is to be defined. This is an important contribution; current tools do

not support key aspects of SE such as communication and collaboration as

a core part of the software development lifecycle. Consequently, problems

such as merge and transactional conflicts are often hidden for long periods

of time using conventional SE approaches and tools, which is usually against

the ideals of the developer and the employed SE methodology.

A solution where computer-mediated CSE is supported may allow devel-

opers to be aware of the actions and intentions of others in real time, avoiding

coding errors and potentially speeding up the software development process

considerably. A means to supporting CSE has been challenging to derive

because conventional SE tools are inherently single user, and they can not

easily be augmented by Groupware to solve all CSE problems. Purpose-built

CSE tools can provide specific facilities to support SE more collaboratively,

but a more general-purpose solution may be required for real-world software

development teams.

In Chapter 3, patterns of collaboration evident within SE are identified.

By exposing the recurring modes of work between developers within collabo-

rative software projects, CSE tools can be designed according to the observed

key requirements of collaborating developers.

42

www.manaraa.com

Chapter III

Patterns of Collaboration

Patterns of collaboration have been identified by several research groups

as a useful means to describe trends of interaction and cooperation. This

chapter has a specific focus on patterns to support CSE, starting with an

overview in Section 3.1. General patterns of interaction are introduced in

Section 3.2. In Section 3.3, a discussion on the types of collaboration within

SE is presented. This chapter concludes with the presentation of candidate

patterns for CSE in Section 3.4.

3.1 Motivation

To support genuinely useful CSE tools, identification of the demands that

programmers are likely to place on such tools is essential. To facilitate tool

development, it is equally important to identify the core functions that re-

searchers will require when constructing new types of tools. Research behind

the Caise collaborative framework was guided by the identification of the

patterns presented in this chapter. The research goal is to support developers

working together in ways described by these important patterns.

Patterns are commonly used to document recurring situations and solu-

tions. Alexander’s concepts from the architectural domain [3, 2] have been

remarkably successful, and design patterns for SE [43] have become an indus-

try standard form of documentation for the construction of software systems.

Patterns vary in degree of detail; some describe simple concepts such as ele-

gant mechanisms for iterating over a list, others describe entire organisation

structures such as Conway’s Law [63].

The success of patterns within software design has led to the construction

of pattern languages for other fields. Martin and Sommerville [68] have iden-

43

www.manaraa.com

tified a number of patterns which reflect the ways in which groups of people

interact to perform tasks. Patterns have also been identified for the organisa-

tional management of software development by Harrison and Copelien [63],

and patterns for Groupware have been described by Schümmer [101].

In this chapter, the concept of patterns of CSE is introduced. These pat-

terns are described for motivational purposes, providing examples of com-

mon scenarios within CSE for software engineer researchers. The patterns

presented in this chapter are not claimed to be complete. The purpose of

providing these example patterns is to illustrate basic situations that CSE

tools should support; an inability to support these various modes of work

suggests that further work is needed in CSE tool design.

3.1.1 The Patterns Language

Design patterns are typically described through a patterns language. A pat-

tern language attempts to abstractly define recurring trends of software de-

sign. While no one patterns language has gained universal acceptance, most

describe the following list of properties:

Name The common name given for the pattern

Context The general situation in which the pattern can be applied

Problem The problem that the pattern addresses

Forces The factors that govern the use of the pattern for the given context.

Forces include ease of pattern application, scalability of design, and

robustness

Symptoms Known undesirable characteristics of software that indicate the

given pattern might provide suitable relief

Solution A description of how to apply the given pattern. This will typi-

cally include coding examples, UML diagrams, and a discussion of the

intricacies of applying the solution to specific contexts

44

www.manaraa.com

Rationale A justification of why the pattern is desirable, and how the so-

lution provides a better final design than other approaches

Examples A walk-through of software as it is refactored to accommodate

the given pattern. Examples normally discuss the problem, context

and forces as well as the solution

Danger Spots The common pitfalls when using this pattern, and recom-

mended work-arounds

Known Uses Identification of existing applications of the given pattern in

software systems or processes

Related Patterns A listing of collaborating and associated patterns, as

well as patterns that may provide an alternative solution

Known as the rule of three, the publishing of a pattern by its designer

is generally discouraged within the patterns community. Rather, three in-

dependent examples of the pattern being used within typical SE scenarios

should be identified and documented by a third party. This rule is aimed at

preventing the proliferation of weak patterns.

3.1.2 An Example Pattern

To serve as an overview of this chapter, the Mode of Development pattern is

presented. This is a candidate pattern identified within the field of CSE. As

part of the work towards CSE, Mode of Development is discussed in detail

in Section 3.4.2.

The Mode of Development pattern describes the predominant ways that

programmers interact with each other when working collaboratively on a

shared set of artifacts. As explained in Section 3.4.2, there are many modes of

development, including one identified as Action/Reaction. The Action/Reaction

mode of development encapsulates the recurring behaviour of the following

common situation: one programmer makes a modification to the code base,

a second programmer is alerted to a possible conflict, and then both pro-

grammers group to resolve the conflict.

45

www.manaraa.com

Figure 3.1 presents the Action/Reaction pattern as it eventuates. In this

example, Caise-based CSE tools are used to illustrate the pattern within the

context of fine-grained interaction. To set the scene, user Alice is working

with a class diagramming tool, and user Bob is working with a text editor.

This example continues from the scenario presented in Section 1.1. Both

tools are running in real time collaborative mode, operating on a shared

code base.

In Figure 3.1(a), Alice decides to rename the method saveXML() in class

Persistence to saveAsXML() through the class diagrammer. Alice is not

aware, however, that a new call to Persistence.saveXML() has recently

been made by user Bob in the file GUI.java, and that renaming the method

will break the code.

In Figure 3.1(b), Bob is notified through an awareness mechanism that

the project has recently moved into an inconsistent state. In the lower half

of the text editor presented in the right hand side of Figure 3.1(b), the

Artifacts Pane highlights the file that currently contains a semantic error.

By inspecting the Feedback Pane at this point, Bob will be informed that

the method he is currently editing makes a call to Persistence.saveXML(),

which is now unresolved. At this point, Alice will also be made aware of the

same problem through feedback mechanisms.

In Figure 3.1(c), the problem is resolved. By using the feedback infor-

mation presented to both users, or perhaps by simply talking with each

other, both Bob and Alice can decide that either the method renaming

operation needs to be reversed, or refactoring of all calls to the changed

Persistence.saveAsXML() method is required. In this example, Bob sim-

ply updates the method call from within the file GUI.java, and the project

again reaches a buildable state. This concludes the Action/Reaction cycle of

events.

Given adequate and suitable tool support for the Action/Reaction pat-

tern, both users will be alerted to the problem at hand and are also given the

opportunity to immediately consult with each other and correct the problem.

To describe the Action/Reaction pattern in terms of a patterns language,

some example excerpts are presented. The context for this pattern is any sit-

uation where overlapping modifications can be made by any number of users

46

www.manaraa.com

(a) The action: Renaming a method.

(b) Notification: The project has become unstable.

(c) The reaction: Refactoring all relevant method calls.

Figure 3.1: An example of the Action/Reaction candidate pattern of CSE.
47

www.manaraa.com

in either synchronous or asynchronous settings. The problem can be defined

as a lack of awareness that allows conflicting changes to be made without

detection by any party. Competing forces include the degree of isolation each

programmer desires, the feedback mechanisms available, and the ability to

recognise conflicting changes. A potential danger spot is transient changes

that can safely be ignored, although the identification of genuinely transient

changes is most likely impossible to automate. Related patterns include Ob-

server/Observable from Gamma, Helm, Johnson, and Vlissides [44], Private

Work from James O. Coplien and Neil Harrison [63] and Public Artifact from

Martin and Sommerville [68].

Without strong tool support for the Action/Reaction pattern, Alice and

Bob could continue to cause conflicts. If both users are not working closely

together, they are likely to only detect the inconsistent state of the program

after synchronising their source files. In this case, both users will probably

attempt to fix the problem by modifying their individual changes—which

will again break the main project build once both sets of source files have

been committed back into the code repository.

It should be noted that even with conventional tools, the Action/Reaction

pattern will still apply. In such cases, however, the time-scale between each

phase of the pattern will be longer. This is because the notification of con-

flicting actions is usually actuated by periodic build reports from the central

code repository. The resolution of the conflict may also be confounded by

other modifications made prior to conflict identification.

3.2 Patterns of Interaction

Previous work towards the identification of interaction patterns exists. The

main perspectives that are closely related to CSE, as outlined in the previous

section, include Groupware Patterns [101], Patterns of Cooperative Interac-

tion [68], and Organisational Patterns for Agile Software Development [63].

These patterns to describe interaction between participants within collabo-

rative settings are well aligned with CSE processes.

Example patterns from Sommerville and Martin’s Cooperative Interac-

tion collection include Artifact as an Audit Trail and Collaboration in Small

48

www.manaraa.com

Groups. The Artifact as an Audit Trial pattern discusses how various types

of artifacts are used within collaborative systems as a means for providing

revision histories. This includes a discussion on why keeping the history of ar-

tifacts is useful in terms of providing audit trials, which is of direct relevance

to many types of SE artifacts.

Many other patterns from this collection can also be used to describe

activities and aspects of CSE. This collection has recently been expanded to

describe XP as a collaborative process [67], using a subset of patterns with

specialised examples and descriptions. Since XP can be viewed as a subset

of generic CSE in many ways, patterns of cooperative interaction for XP are

very closely related to CSE.

Copelien and Harrison’s Organisational patterns [63] for agile software

development serve to document and describe the recurring themes within a

modern software development team. These patterns, based from extensive

observations and community input, include Private Work, Incremental Inte-

gration, and Developing in Pairs. Many other patterns in this large collection

are also highly related to the collaborative construction of software, which is

not surprising considering the large amount of group work within SE teams

today.

As an example pattern, Developing in Pairs discusses the inevitable blind-

ness of working alone, and the psychology behind teamwork for problem solv-

ing. This pattern also comments on the high likelihood of producing more

as two developers together than the sum of two people working alone. For

CSE researchers, this pattern identifies important associated patterns, and

presents some examples of tasks well-suited to development in pairs.

Schümmer’s Groupware patterns, while not specifically related to SE, are

closely related to CSE processes and the support of CSE tools. These pat-

terns, which are a work in progress, outline the recurring themes within sys-

tems that utilise computer mediated interaction. Example patterns include

Mode of Collaboration, Private Workspace, Shared Workspace, Collaborative

Virtual Environments, Floor Control and User Awareness. This collection

of patterns list and describe the considerations for any CSCW-based tool

developer, with aspects ranging from multi-user widgets to social protocols

of interaction.

49

www.manaraa.com

Patterns for collaboration within SE and related fields are becoming in-

creasingly investigated and documented. What appears to be missing, how-

ever, is a discussion of patterns of collaboration for real time, fine-grained

CSE. It is likely that researchers have not addressed a CSE-specific family

of patterns before because the technology and tools to support CSE are not

yet readily available. Given tools to support fine-grained real time CSE, new

research opportunities exist to explore CSE patterns as they emerge.

3.3 Collaboration within Software Engineering

Before discussing patterns related to CSE, the functions and roles common

to SE are investigated. This section presents recurring SE topics such as the

modes of collaboration evident within SE today, and the types of feedback

necessary to support well-informed development of software. The discussion

presented in this section provides a listing of key observations within SE

practice, independent of specific methodologies that might be followed.

3.3.1 Modes of Collaboration

The quadrants in Table 3.1 represent the four main modes of computer-

mediated collaboration as practiced today. Conventional, code repository

based SE can be mapped to either quadrant in the asynchronous column,

depending on whether development is entirely in-house, or distributed via a

networked repository such as SourceForge. The pair-programming aspect of

XP can be mapped to the same-time/same-place quadrant.

Synchronous Asynchronous
Co-located Face-to-face meetings Office document editing
Distributed Text chat Email

Table 3.1: Synchronous versus asynchronous development: typical tasks
within each quadrant.

For developers of CSE tools, support for collaborative development can

potentially be mapped to all quadrants within Table 3.1. For example, a tool

that supports the real time editing of source files can be used in co-located

50

www.manaraa.com

or distributed settings if it provides adequate awareness support about the

actions and intentions of other collaborating users. Similarly, if users are lo-

cated in different time zones, it is possible that usage might be asynchronous

rather than in real time. Other CSE tools might be designed only for use

asynchronously and/or in co-located settings.

3.3.2 Current Facilities for Collaboration

Within nearly all fields of work, people find it necessary to collaborate

with each other. Typical means of collaboration include face-to-face meet-

ings, tele-conferencing, email, text and audio chat, telephone correspondence,

memos and written letters.

Within SE, other facilities for collaboration are available and used reg-

ularly. Using code repositories, developers are notified when their commits

back into the repository fail due to merge conflicts. Additionally, automated

build results will notify software engineers of compilation problems. If auto-

mated test facilities exist, engineers will also be notified when unit tests fail

due to recent changes within the code base.

In terms of face-to-face meetings, the XP process formally prescribes daily

meetings to discuss the current state of the project. Regular meetings to plan

and discuss current development activities for most other SE processes are

implicit.

At an hour by hour granularity, however, field studies suggest that en-

gineers spend from quarter [120] to half [15, 86] their time communicating

with others even when supposedly developing code individually. This type of

impromptu interaction occurs whenever problems are detected during devel-

opment and testing. Most problems are detected from repository notifications

and build reports. These events prompt developers to discuss their recent

code changes and proposed resolutions in more detail than the daily recap

meeting, and only with the subset of developers who are most closely tied to

the changes.

51

www.manaraa.com

3.3.3 Examples of Existing Collaboration Support

Collaboration within SE extends to processes, tools and artifacts. Existing

support for collaboration within SE is limited, which serves as motivation for

the work presented in this thesis.

As described in the previous section, software engineers use meetings,

email and impromptu face-to-face discussions to communicate, coordinate

and resolve issues during the development process. As an aide to discovering

potential issues and conflicts, feedback from code repository systems, daily

builds and unit test facilities are common sources of activity information.

In terms of tool support for collaboration during conventional SE, ex-

amples have been introduced in Section 2.4.1. Prototype components and

frameworks to assist collaboration beyond the capabilities of conventional

tools have been presented in Section 2.5. In this section, a discussion is pre-

sented of how developers typically use conventional SE tools during group

development.

To support pair-programming, a single instance of an editor is typically

used. Two programmers have alternating ownership over the input devices,

where one user will make changes to artifacts based on agreement with the

observer. Code reviews are also carried out in a similar manner to this.

For editing of source code within a conventional team environment, each

developer will use a text editor of his or her choice. Files are typically shared

asynchronously via a code repository, with regular integration of modified

files.

When using more complex tools such as IDEs, collaboration exists even

within single-developer projects. IDEs typically support multiple views of

artifacts, which means that all components within the IDE must collaborate

with each other to keep their views consistent—otherwise known as round-

trip engineering. When multiple developers within a team use IDEs as their

code editor, collaboration is again facilitated through a code repository.

Regardless of the types of tools used, developers typically also use email

and mailing lists to help them coordinate and communicate at a higher level

than what their tools and code repository permit [51].

52

www.manaraa.com

3.3.4 Types of Awareness

At present, single-user SE tools do not have the ability to report the actions

of others or the global impact of changes made as they happen. At best,

conventional tools can analyse changes to the current code base only when

code is integrated with the central repository, or when the tool updates its

version of files from the repository. Most forms of static code analysis take

no notice of which user made modifications, and can only be performed once

the changes have been made.

An interesting challenge to researchers and designers of CSE tools is defin-

ing the types of feedback that should be presented to users, given the ability

to fully analyse a software project as it evolves in real time. Given tools

that can integrate the efforts of any number of programmers in real time and

from any type of tool, it is difficult but possible to generate rich information

related to the impact of modifications, and the identification of relationships

between distinct units of code being developed concurrently.

A listing of typical types of awareness information for collaborative soft-

ware projects is to be presented in Section 4.4. Given these types of feedback

within SE tools, the level of awareness afforded to individual developers may

be greatly improved. Awareness extends not only to changes made by a single

user within his or her private workspace, but the actions, physical locations

and relationships to others within the entire software project.

3.3.5 Atomic Elements of Collaboration

Ultimately, supporting collaboration can be reduced to the identification and

control of atomic elements of SE tasks. Atomic elements are the smallest

useful units of activity that a developer can produce and a tool can recognise.

Using the Action/Reaction example presented in Section 3.1.2, tools need

to identify what is being done in terms of changed program syntax and

semantics, synchronise all interleaved actions between developers, identify

any potential conflicts between changes, notify others of what is happening,

and facilitate coordinated discussions on how conflicts and design decisions

should be resolved.

The level of granularity in identifying actions is dictated by the degree of

53

www.manaraa.com

synchronisation supported; a shared code editor is likely to expose changes

on a per-character basis, whereas UML diagrammers may only recognise

changes once they have become syntactically-complete.

The floor control policy will dictate the order that atomic operations are

propagated to users within the project. In a token-passing scheme, only

one person might be allowed to make a change at a time. Within a fully-

synchronous application, operations might be propagated purely in chrono-

logical order, with the possibility of blocked operations if a conflict is de-

tected.

3.4 Candidate Patterns of Collaborative Software Engineering

In this section, some patterns evident within the process of CSE and devel-

opment are identified. Currently, these patterns are not well supported by

SE tools. For example, following the leader as he or she demonstrates a new

coding idiom is a commonplace activity within development, but typically

the only way to view such a demonstration is by all developers gathering

around one workstation.

It is unlikely that an expansive new family of patterns exclusive to CSE

exists. It is observed, however, that real time support for CSE is limited, and

with adequate tool support these patterns would be more readily recognised.

Some patterns of collaboration for SE are difficult to support with con-

ventional tools, which means that they can only be accommodated with

a very coarse granularity. For example, seemingly independent changes to

source files often involve unforeseen side affects such as broken code depen-

dencies. Currently, the only means to detect subtle coding conflicts between

collaborating programmers is to integrate all checked-out source code and

investigate the errors from the resultant project build. This lengthens the

development time between releases of stable versions and can also confound

any other concurrent source code modifications.

It can be envisaged that with real time tool support for patterns such as

independent code modification, software development might become consid-

erably easier.

54

www.manaraa.com

3.4.1 Formal Identification of Patterns

The research in this thesis does not specifically involve the formal identifi-

cation of CSE patterns. In order to design successful CSE tools, there is a

natural interest in observing how software engineers coordinate their tasks

and collaborate during development. It is hoped that these findings are use-

ful to CSE researchers and the general patterns community alike. At this

stage, however, it is not a key research objective to exhaustively critique and

formally publish the patterns presented here.

As discussed in Section 3.1.1, the rule of three states that the designers

of patterns should not be the same party that publishes the pattern. For

patterns enthusiasts, there are many recurring examples of CSE patterns

within existing software development practices and tools, giving researchers

the opportunity to document and publish such patterns formally if desired.

3.4.2 A Patterns Map for Collaborative Software Engineering

Figure 3.2 presents a CSE-focused patterns map. In this map, related pat-

terns families described in Section 3.2 are grouped, such as organisational

patterns, Groupware patterns and patterns of cooperative interaction. This

map represents the recurring trends of interaction between collaborating soft-

ware engineers that I have identified; it is provided as a means of understand-

ing the implications, competing forces, and different contexts related to CSE.

As indicated by the key in Figure 3.2, several of the patterns within this map

are my own contribution.

CSE is essentially a union of these related families of patterns, with some

additional specific characteristics. In a manner analogous to the ten patterns

of cooperative interaction, work is being carried out to identify these special

characteristics. From preliminary observations based on prototype trials of

tools, I introduce two new candidate patterns for CSE in this section: Atomic

Integration and Modes of Development.

Atomic Integration

James O. Coplien and Neil Harrison discuss the pattern of Incremental Inte-

gration [63], where modified units of source code are regularly and frequently

55

www.manaraa.com

Figure 3.2: The CSE patterns map.

checked back into the main code repository to prevent any major develop-

ment skew. Most proponents of incremental integration argue that a daily

code integration process is sufficient [69].

Going one step further than this, the concept of Continuous Integration

has been proposed [40]. Continuous integration encourages developers to in-

tegrate their modified source files immediately after any modification, as well

as re-synchronising their own cache of unchanged files with the latest version

from the code repository. Some tool support for continuous integration also

exists [39].

Fully-synchronous development tools such as Poseidon [11] and Moomba [92]

allow the concurrent modification of shared SE artifacts. As the artifacts are

shared in real time, no integration effort is required. I define this mode of

configuration management as Atomic Integration, where integration is con-

stant. Each modification is instantly incorporated into the global project

state, with all observing views updated accordingly. Atomic integration is a

key characteristic of the Caise framework, as presented in Chapter 5.

56

www.manaraa.com

Modes of Development

The Protocol pattern for CSCW has been provisionally identified within the

Groupware patterns collection, but no documentation has been published as

of yet. The modes of work defined by the protocol pattern, such as token

passing and brain storming, are well suited to generic CSCW. For CSE,

however, more specific modes of work are encountered. Therefore, I identify

Modes of Development as a new pattern specifically for computer-mediated

CSE.

Several interaction modes [29] have been identified, each characterised by

the degree of coordination required and the nature of the activity:

Private: A user effectively withdraws from the group temporarily, typically

to convince his or herself of the viability of a change before revealing it

to the others. Such a user may require the rest of the project to appear

frozen in time. Ideally, it should be possible to integrate the change

rather than having to repeat it publicly.

The atomic unit of interaction for private work is a set of source files;

once the private work has been performed, the modifications are merged

into the main project version. Notifications of modifications in the case

of private work are likely to be delayed until the code integration period.

It is still possible, however, to alert all parties to conflicting changes

even when a copy of the project’s source files is being developed in

private. This is how the Tukan CSE tool operates [100].

An example of private work is when a user develops a complicated al-

gorithm that has low coupling to the rest of the project. In this case,

the developer might prefer to work in complete isolation, knowing that

feedback events from other related users are likely to be of low impor-

tance. Upon implementation of the algorithm and integration with the

main project, the developer is likely to revert back to a more collabora-

tive mode of development. Private work is the key pattern used within

conventional SE artifact integration, by way of the copy/modify/merge

idiom.

57

www.manaraa.com

Independent: Users are located in regions of code whose semantic relation-

ships are sufficiently weak that they can safely assume independence.

Frequent communication is unnecessary and project integrity is not

threatened by independent updates.

The atomic unit of interaction for independent work might be most

useful at the level of semantic change. In this case, when an area of

code has been meaningfully changed, such as a method being renamed

or an additional class being declared, other related users are notified. It

is unlikely in the case of independent development to have overlapping

modifications that cause conflicts.

An example of independent work could be user A editing a GUI (view)

class to alter a menu, user B editing a customer record (model) class and

user C adding a new package which does not yet interact with other

classes. In this case, only marginal feedback between users is likely,

and communication is expected to be at a low level. The independent

mode of work candidate pattern is commonly exhibited in large, well

coordinated software projects; a field study of the NetBSD project

shows situations where developers follow this pattern [51].

Follow the Leader: One user takes others on a guided tour, possibly mak-

ing coding modifications along the way. Strict What You See Is What

I See (WYSIWIS) might be used to coordinate views, particularly if

all users are using the same tool. However, in a more relaxed scenario,

users would navigate individually, guided by audio commentary and

gestures.

The atomic unit of interaction for a follow the leader situation needs

to be fine-grained. Ideally, a modification of any kind needs to be

immediately propagated from the leader to all followers. Fortunately,

as the leader is the only person likely to be making changes, control of

event ordering is trivial. In strict-WYSIWIS environments, CSE tools

will propagate changes in the leader’s view to all other tools.

A follow the leader scenario might consist of one key developer showing

the details of a recently completed change. Another example would be

58

www.manaraa.com

showing a group of developers how to modify one of several classes

that all require the same type of refactoring. The follow the leader

candidate pattern is exhibited in the JBuilder 2006 IDE [12], by way

of a token-based file sharing mechanism.

Working Together Workers examine and edit the project as a pack. In

some situations this might mean a group of two or three developers

working on the same physical region of code. In other situations this

might mean a close group of developers making careful and informed

modifications to areas of highly related regions of code. This mode

of development is very similar to Follow the Leader, except that all

members of the group are likely to be involved in the modification of

the project rather than just the leader.

As developers in this mode work very closely together, a fine unit of

interaction is required, allowing all changes to be propagated immedi-

ately. In the case of source code editors, this might mean the propa-

gation of changes on a per-character basis. Social protocols are likely

to dictate the order of events when working together; for example, it is

unlikely that one user will select and delete an entire method if he or

she is aware that another user is currently modifying it.

An example of working together could be three users attempting to

split a large class into two smaller ones. One user can define the second

class, placing it in the appropriate package. The second user can start

moving the relevant methods from the first class to the second class.

The third user can start searching for newly broken references and begin

correcting them. Until the completion of this task, it is very likely that

the users will be in frequent communication, coordinating their efforts

and discussing design implications. The working together candidate

pattern of CSE can be observed in a field study of the SubVersion

project [51].

Action/Reaction: Stronger constraints exist as users become closer in phys-

ical, logical or semantic terms. Changes made by a user (the actions) to

aspects such as the number and type of class properties, the parameters

59

www.manaraa.com

and return types of methods or the inheritance and interface structure

will require responses (reactions) from other users whose work is po-

tentially affected. Awareness mechanisms can alert users to possible

threats (e.g. another user is editing a superclass). Collaboration sup-

port mechanisms, such as text or audio channels and gestures, can then

be employed to discuss and resolve the issues.

The atomic unit of interaction for Action/Reaction modes of work ide-

ally should relatively small. At the most coarse level, every event that

updates the project’s semantics should be propagated to the view of

all other participating users. Even though most propagated changes

are likely to go unnoticed as they do not affect the work of other users

directly, the instant a modification does cause a conflict for another

user, notification and discussion should take place.

A detailed example of the Action/Reaction mode of work was presented

in Section 3.1.2. A similar example could be one user changing the type

of a parameter in a method definition in class C1. Another user editing

class C2 may need to update newly created calls to that method. The

sooner the action is exposed to all related users the better in terms of

avoiding confusion and development delays.

Mêlée: Several users are making (potentially-) conflicting changes to a set of

artifacts and these will be in a state of flux for a period. Such changes

would typically be negotiated in advance, and mediated throughout,

by infrastructure features such as an audio channel.

There is no obvious atomic unit of interaction for the mêlée mode of

development. For groups where communication is restricted, such as

in distributed development, fine-grained changes such as per-character

modifications are likely to require detection and propagation to all col-

laborating users. For other situations, the atomic unit of interaction

might only need to be relatively coarse, in order to reduce continual

interruptions. The level of granularity of change ultimately depends on

the existing social protocols for mêlée-based modes of development.

An example of the mêlée mode of development could be a large refac-

60

www.manaraa.com

toring effort where all developers are aware that refactoring is being

carried out. In this case, specific refactoring duties are likely to have

been allocated in advance. During this period of development, feedback

about relationships between participating users and currently broken

code dependencies might be replaced by a richer mechanism such as

audio-conferencing. The mêlée mode of development can be observed

in most conventional software development projects, whenever a period

of concerted refactoring takes place using conventional source code con-

trol tools.

At a basic level, these modes of development are evident within SE prac-

tices today, even without the support of CSE tools. Given a progression

towards more synchronous tool support for generally collaborative tasks, it

is also possible that these modes of development provide a suitable sum-

mary of the main interaction patterns for all fields of computer mediated

interaction and CSCW.

3.4.3 Applying Patterns of Collaborative Software Engineering

To assist researchers in the design of new CSE tools, they should be aware of

the CSE-related patterns. These patterns represent the recurring themes of

software development that have intricate design and implementation consid-

erations. The CSE patterns map presented in Figure 3.2 is a suitable starting

point when considering the design of any CSE tool.

With reference to this CSE patterns map, developers of CSE tools need

to take into account the modes of development that the tools will support.

While a powerful CSE tool might be able to accommodate all modes of

development, other tools might specifically support only one mode. In this

case, the fundamental design of the CSE tools is likely to differ. For example,

if Follow the Leader is the only supported mode, then strict WYSIWIS may

be the only view that requires implementation.

The type of tool being developed also brings in special considerations.

For a collaborative class diagramming tool, perhaps the Independent mode

of development is assumed. In this case, locking of each currently modified

section of the project’s semantic model could be implemented to control

61

www.manaraa.com

concurrency; this is Poseidon’s [11] primary mode of development. In this

case, the Floor Control policy can employ relatively simple Token Passing to

control concurrency issues.

For a CSE tool that supports both source code and diagrammatic views,

it will be worthwhile investigating the Multiple Representations pattern. For

the mode of integration, a decision needs to be made as to the supported

levels of collaboration granularity. The tool designer must determine whether

modifications are to be committed and integrated incrementally, continuously

or atomically. In some tools, multiple levels of collaboration granularity may

be possible to support.

Another important consideration is that of Private Worlds. If private

worlds are to be supported, allowing developers to work in isolation, there

are a key number of aspects to consider. How long is a developer allowed

to work in a private workspace for? Is the limit based on time, or perceived

integration effort? How will integration back into the main collaborative

project be supported? Will awareness mechanisms still be afforded to the

user when he or she is working on a separate code base?

In terms of developer Roles, will there be certain roles for different users,

or is this handled at a higher level? Most CSE tools in existence today

are built around specific SE processes. Poseidon [11], for example, bases

its support primarily around software design. Moomba [92] supports pair-

programming based development. Single-user tools also often support specific

roles. Therefore, another consideration is which roles will be supported by

the CSE tool, or will social protocols alone provide adequate governance for

user interactions?

User presence is another very important aspect for any CSE tool. The

Groupware patterns introduced by Schümmer provide an excellent starting

point for ensuring an adequate system design in terms of user awareness and

feedback [101]. Considerations include support for telecursors, multi-user

scrollbars, relaxed WYSIWIS, metaphors for user proximities, and audio

gestures as described elsewhere [55, 95].

The cooperative interaction pattern Artifact as an Audit Trail has inter-

esting implications for CSE. Most CSCW-based collaborative editing sys-

tems work on transient artifacts such as shared whiteboards, and a revision

62

www.manaraa.com

history is not required. For CSE, however, in most cases a history of artifact

modifications is a useful tool function. If a history is recorded, is it limited

to artifact modifications? Or should further information be logged such as

user interaction, attempted project builds, and semantic events such as a

new class being added or a reference being resolved?

As illustrated in this section, there are several serious issues to consider

when designing tools to support CSE. The patterns map for CSE is a useful

reference for determining system requirements. Once the core requirements

of the proposed CSE tool have been defined, reference to the relative patterns

is likely to be of assistance during the tool design and development phases.

3.4.4 Collaboration Antipatterns

Software Antipatterns [17], are recurring themes of development or design

that negatively affect the SE process. One example of a common antipat-

tern is the God Object, where an object has too much knowledge about all

other objects in the system. This violates commonly accepted programming

principles such as data encapsulation and low coupling.

In the context of CSE, some commonly accepted patterns to assist the pro-

cess of SE may lead to issues under certain circumstances. Private Worlds,

for example, may be necessary during periods of experimental coding, but

will increase the integration effort if used exclusively during a large project.

SE practices are based upon existing tool support. It is envisaged that

once CSE tools become commonplace for group development, some currently

accepted idioms of SE may become obsolete or superseded. These include

Private Worlds, restriction of Development in Pairs to just two developers,

and possibly the organisational pattern Face-to-Face Before Working Re-

motely.

It is conceivable that patterns previously considered as good practice

might eventually be reclassified as SE antipatterns in some programming

scenarios. There will be times, however, when patterns seemingly orthogonal

to CSE will still be required. For example, several teams may occasionally

choose to work on separate code bases and integrate their changes back into

the main project, regardless of the ability of CSE tools to provide a fully

63

www.manaraa.com

synchronous integration facility.

A discussion is presented in Section 8.1.2 on how varying levels of col-

laboration, such as in the example described above, can be supported within

CSE systems.

The Private Worlds Pattern

The Private Worlds pattern is investigated in detail to provide an example

of how currently limited SE technology can restrict programming practices.

From Harrison and Copelien, the Private Worlds pattern is described as

“. . . balancing the need for developers to use current revisions, based on peri-

odic baselines, with the desire to prevent developers from experiencing undue

grief by having development dependencies change from underneath them”.

There is undeniably a time and a place for ‘Private World’ development,

using code repositories to integrate off-line development efforts back into the

main project branch. The concept of private work has also been identified

in Section 3.4.2 as a mode of development that should be supported by CSE

tools. The problem is, however, that private work is predominantly the only

mode of development for software engineers at present.

The following research findings provide arguments against continual pro-

tection from “changing development dependencies”:

1. Too much time is spent correcting mistakes based from limited com-

munication [15]. Even programmers who work ‘privately’ spend up to

half their time each day collaborating rather than coding [86]

2. The earlier conflicts are detected, the earlier they are resolved [99].

In addition, the longer problems take to fix, the more expensive the

software project becomes [104]

3. Programming using private work-spaces is difficult to manage, new

users struggle to gain acceptance, and the time to market is slow [51]

4. Merging tools still struggle with concurrently edited source files [70]

64

www.manaraa.com

5. The concept of private development areas for individual programmers

does not scale well [121] [16]. Brooks Law states that “the complexity

and communication costs of a project rise with the square of the number

of developers” (quoted in [91]).

6. New generation code repositories such as Bit-keeper [10] and CruiseC-

ontrol [39] are starting to change the conventions of repository-based

SE. They support more synchronous distribution of code by frequently

updating all developer code bases with fine-grained units of change

The Private Worlds pattern is definitely warranted in times where a low

code integration effort is likely. It is unfortunate, however, that private work

areas provide the main facility for conventional software development, even

in teams where regular and frequent collaboration is encouraged.

I therefore classify the Private Worlds pattern as one of several likely

antipatterns of CSE if used unwisely. This is due primarily to the limitations

that private work areas place on communication and user awareness, and the

high effort often required to integrate code back into the main project.

Summary

The work presented in this chapter towards patterns of CSE is consistent with

the way in which patterns have been defined in related fields of research. The

classification that is presented here is certainly not the only way CSE-related

patterns can be grouped, but it does immediately assist in the discussion of

requirements for future CSE tools.

One of the most important aspects of CSE patterns is that they provide

tool developers with valuable design information that would be otherwise

hard to obtain. Being aware of CSE-related patterns allows researchers to

focus on getting the fundamental design of CSE tools and supporting facilities

correctly. This is significantly different to the costly and often unsuccessful

alternative of building tools and then trying to redesign them after user trials

and evaluations.

The patterns that have been defined, such as Mode of Development, were

difficult to identify because professional CSE tools are not yet available and

65

www.manaraa.com

in widespread use. It is likely, however, that these modes of development

will be supported by CSE tools as new tools emerge. The rate of uptake of

these patterns will be the most accurate determinant of successful pattern

identification.

There are undoubtedly other as-of-yet unexplored patterns related to

CSE. Many of these patterns, however, might not be exposed until re-

searchers have performed longitudinal studies of a diverse range of groups

using highly-functional CSE tools.

Some patterns of conventional software development have been identified

as potentially harmful if used in fully collaborative systems. This point is

raised to make CSE tool developers aware of potential pitfalls when convert-

ing conventional SE tools to CSE-capable ones.

The research of this thesis is aimed to support the patterns of collabora-

tion evident within small groups of software engineers. These patterns are

difficult to support with conventional SE tools, therefore attention is focused

on the design of flexible and powerful CSE-based tools. The design require-

ments for such tools are discussed in Chapter 4, and an implementation of a

collaborative framework to support such tools is presented in Chapter 5.

66

www.manaraa.com

Chapter IV

Supporting Collaborative Software Engineering

“As an aside I would like to insert a warning to those who identify
the difficulty of the programming task with the struggle against the
inadequacies of our current tools, because they might conclude that,
once our tools will be much more adequate, programming will no longer
be a problem. Programming will remain very difficult, because once
we have freed ourselves from the circumstantial cumbersomeness, we
will find ourselves free to tackle the problems that are now well beyond
our programming capacity.”

Edsger W. Dijkstra,

1972

Determining the requirements for CSE tools is an important task. With-

out clearly identifying the core requirements for CSE tools, it is unlikely that

any tool will be met with great success.

In this chapter, the essential considerations for CSE tool developers are

presented. These considerations reflect the core features that any CSE tool

must support. This provides a context for distinguishing appropriately de-

signed CSE tools from poor ones. In Chapter 5, a framework is presented

that demonstrates one way to support these pertinent aspects of CSE tools.

A discussion of tool support for CSE patterns is presented in Section 4.1.

In Section 4.2, requirements for tool design and implementation are pre-

sented. Threats to successful tool adoption are also discussed. In Section 4.3,

semantic model-based SE is described as a mechanism for supporting some of

the tool requirements identified. This chapter concludes in Section 4.4 with

a discussion of awareness support within CSE tools.

67

www.manaraa.com

4.1 Tool Support for Collaborative Software Engineering

Tool support for CSE and its associated patterns, as identified in Section 3.4,

is imperative. Conventional SE tools, however, often provide substandard

support for these patterns of collaboration. At present, developers have

their coding activity stifled by tools that do not seamlessly integrate the

related work of others. Additionally, conventional tools provide only minimal

support for various modes of coordination and communication, yet these are

aspects of SE identified as significant barriers to development [34].

Examples of the inadequate tool support for CSE patterns are briefly

listed here. The Follow the Leader pattern can only be applied if the leader’s

display is relayed to each developer in the team by video-conferencing or

specialised software. The Working in Pairs pattern can normally only be

implemented by sharing one workstation between two co-located users. The

Action/Reaction pattern can be supported by current tools, but the delay

between the action and the reaction is often measured in days, not seconds.

4.1.1 The Need for Better Communication Support

As discussed in Section 2.2, collaboration is a significant factor within SE.

From Perry [86], communication consumes approximately half of each de-

veloper’s time. From Vessy [117], software development activities involve

cooperation 70% of the time. Subsequently, breakdowns in coordination and

communication are a major development problem, as asserted by Curtis [34].

Estublier claims that frequent updates are necessary for the successful

coordination of changes within and between source files [37]. This claim has

been strengthened by data produced during a study of large-scale software

development by Perry, Siy, and Votta [87]. Clearly, more automated support

for coordination of development efforts will reduce the time spent correcting

conflicting code modifications.

With the presence of collaboration-aware SE tools, it is possible to identify

and analyse the concurrent activity of other users in real time. This provides

the potential for errors and conflicting actions to be proactively detected

and avoided, rather than the reactive approach of waiting on eventual failed

project builds to initiate costly error correction.

68

www.manaraa.com

Real time, shared development of software between groups of participat-

ing engineers also means that the use of code repository systems can be

avoided for fine-grained modifications of a project. Given technologies to

support real time development, either distributed or co-located, the possi-

bility of merge conflicts is removed altogether. This in turn is highly likely

to reduce the overall cost of software development; some evidence of this is

provided in Section 7.3.2.

4.1.2 Common Tool Design Approaches

There have been many types of CSE tools constructed previously, as pre-

sented in Section 2.5. The following common types of design approaches are

identified, accompanied by their inherent limitations:

Conventional Tool Augmentation A common approach to supporting

CSE is the augmentation of conventional SE tools with collaborative

services. Palant̀ır [98], for example, does this by analysing code repos-

itory activity and reporting potential configuration management con-

flicts back to each user in real time.

This approach of observing code repository information, however, re-

stricts feedback to the detection of potential conflicts between source

files. It is not possible to detect semantic errors until the source code

has been committed back into the repository. Additionally, the granu-

larity of feedback information is governed by the frequency of repository

updates, which can be very irregular. There are also many other issues

with converting single-user tools to being collaborative, as discussed

previously in Section 2.6.1.

Custom Tools Several collaborative tools have been constructed specifi-

cally for certain SE tasks. Tukan [100], for example, provides user

presence information as developers work on files from the same source

code repository. Rosetta [48] allows collaborative web-based construc-

tion of UML diagrams.

While these tools are near ideal for the given task, their resultant re-

stricted and inflexible nature prevents them from gaining wide-spread

69

www.manaraa.com

acceptance. The language grammars are typically hard-coded into the

tools, which means that support for new or multiple languages is dif-

ficult to implement. Additionally, as these tools are often limited in

design, they do not scale well in terms of number of concurrent users

and size of the working project.

Workflow Systems To control an overall group process, workflow systems

such as The Coordinator [19] have experienced varying degrees of suc-

cess. Within a CSE setting, workflow systems such as Visual Studio

Team System [73] have been used to coordinate the efforts of appli-

cation developers according to the project plan and prescribed devel-

opment process. Quality assurance systems such as Bugzilla [76] also

employ workflow mechanisms to coordinate testing and bug fixing.

As workflow systems enforce specific processes by their very nature,

however, it is difficult to envisage a workflow-centric system that sup-

ports software development down to the coding level—far too much

development activity is unplanned and volatile in nature. The Coor-

dinator, for example, failed to accommodate daily variances in project

plans, which resulted in strong user resentment and resistance, even

when applied to a general workflow context.

IDE Integration Professional IDEs such as Eclipse [83] are fully featured,

and if they are extensible by way of a plug-ins interface or are open-

source, it is theoretically possible to convert them into rich CSE tools.

Such IDEs have semantic models that can be employed to analyse rela-

tionships between users making concurrent modifications, and already

have large user bases.

To make the transition from conventional to CSE tools, candidate IDEs

are likely to require conversion from code repository-based collabora-

tion to fully-synchronous artifact sharing systems. This conversion,

however, is a major task that requires a large development effort. Sub-

sequently, all collaboration support for IDEs to date simply involves

the augmentation of inbuilt code repository facilities, as in the Jazz

70

www.manaraa.com

project [21], or collaboration is limited to high-level functions such as

chat and shared white-board applications, as in the ECF project [66].

It is apparent that regardless of the development approach taken, design-

ers of CSE tools face difficult problems to solve. The resolution for most of

these problems can be provided by fully modelling source code and its in-

herent relationships explicitly, and providing shared real time access to this

model. The concept of shared semantic modelling is discussed further in

Section 4.3.

4.2 Considerations for Tool Developers

Despite recent technological advances in distributed systems technology and

desktop processing power, no single system exists that solves all the current

challenges in supporting CSE. Instead, there has been a proliferation of

prototype tools that support specific SE tasks [92, 98, 41, 11, 100, 48], and

subtle collaborative enhancements have been made to existing commercial

single-user tools [66, 12, 115, 21].

In this section, the key aspects that CSE tools must address in order to

satisfy the requirements of SE in the large are discussed. The key questions

are: given CSE tools that operate potentially in real time on a shared set

of evolving SE artifacts, what are the changes from the perspective of the

developer, and are these changes acceptable?

4.2.1 Tool Design

In the previous chapters, the need for greater collaborative support for SE

has been demonstrated. CSE tool design, however, is a difficult and chal-

lenging task—many aspects must be considered in order to provide successful

facilities for CSE. Additionally, when designing a CSE tool, initial investi-

gations may not necessarily reveal the full set of requirements essential for

adequate tool construction.

The main aspects for consideration when designing a CSE tool of any type

are identified in this section. While not necessarily complete or exhaustive,

the list has been derived through lessons learned during extensive CSE tool

71

www.manaraa.com

design, testing and evaluation. The criteria given in the following list have

been grouped into three categories: Tool, Task and People. The aspect of

collaboration is dispersed throughout each of these categories.

This list is provided as a useful discussion document, providing CSE tool

designers with means to define their own set of requirements as they develop

specific tools.

Considerations for Supporting CSE Tools

The following considerations are applicable to the design of any CSE tool.

Management of Artifacts Which types of artifacts are to be shared? How

will they be stored? Will a modification history be kept?

Mode of Change Integration Is a pessimistic or optimistic locking scheme

employed to control artifact modification, or is some form of real time

artifact sharing possible? If so, what floor control policies are in place

to manage collaboration? Are private work facilities available?

Multiple Language Support Should the CSE tool support more than one

language? Are languages restricted to a particular paradigm such as

OO languages?

Multiple Views of Artifacts Are multiple views of artifacts supported,

such as viewing of a source file as both code and as part of a class

diagram? If multiple views are supported, is the mapping mechanism

capable of fully catering for each view, and translating between views?

Extensibility Should the CSE tool support extensibility and customisa-

tion? If multiple views of artifacts and multiple languages are sup-

ported, how can new views and languages be added?

Semantic Model Construction Will a full semantic model of the shared

software’s entities and relationships be constructed? Or, will the pri-

mary source of tool information be pattern matching and other heuristic

approaches that scan source files for named tokens and declarations?

72

www.manaraa.com

If a semantic model is constructed, will it replace the source files as the

authoritative repository of information for the project, or will source

files be annotated with semantic model markup tags? Additionally,

can parts of the semantic model be locked for concurrency control as

well as source files?

User Presence Feedback Should the CSE tool be capable of detecting

overlapping areas of modified code based on semantic relationships? If

so, how is this to be supported?

Impact Reporting Should the CSE tool be capable of immediately detect-

ing a change in the program state, such as a reference being resolved

or broken, immediately after the modification is made? If so, how is

this to be supported?

Usability How should the CSE tool deliver feedback to the user? Will such

feedback be embraced by the user or seen as a hindrance? Can feedback

be customised or suspended by individual users?

Communication Media Richness Which types of collaboration media are

available within the CSE tool? How well-suited is the richness of the

communication facilities in comparison to the complexity of the devel-

opment task supported by the tool?

Workflow Is the CSE tool expected to interface with third-party services

such as bug-tracking databases, documentation libraries, component

libraries and workflow/project management systems?

Considerations for Supporting CSE Tasks

The following considerations address key aspects relating to the types of

tasks, independent of the actual tool type.

Task Type Which types of SE tasks are to be supported? Tasks likely to

be supported in CSE tools include requirements gathering and analy-

sis, system design, implementation, unit testing, program maintenance,

validation and verification.

73

www.manaraa.com

Task Complexity Can a range of tasks be supported in terms of complex-

ity, or are only simple tasks such as code reviews to be supported?

Task Size What is the size of a typical task supported by the CSE tool, in

terms of terms of number of files, classes, packages and lines of code?

Task Duration What is the length of a typical project that uses the CSE

tool? For fine-grained tasks, how long will users keep the same set of

files open for? The duration of fine-grained tasks will impact on the

choice of concurrency control within the CSE tool.

Task Process Which development methodologies should be supported? Is

the development process open source, where there are often no time

pressures and heavy moderation of changes, or is a closed-source and

highly coordinated approach more likely? How many modes of de-

velopment are likely to occur? Is the CSE tool focused on a specific

methodology such as XP or RUP? If so, are additional methodology-

specific considerations required?

Considerations for Supporting Developers

The following considerations are independent of tasks and tools—they ad-

dress aspects of typical tool users.

Group Size What number of people are likely to be supported? What is

the maximum number of people likely to be working closely together

on the same subset of artifacts within the project?

Culture What are the ability levels of each developer? Should a mix of abil-

ities be supported? Does a culture exist within the team where certain

informal social processes are likely to be followed, such as posting code

update notifications to a mailing list?

Roles Are there predetermined roles within the development group, such as

moderators, project managers and analysts? If so, should the CSE tool

explicitly support such roles?

74

www.manaraa.com

Location Are the developers in a face-to-face and constantly co-located set-

ting, or are they distributed throughout several departments or organ-

isations?

Time Will developers typically work at the same time, different times, or a

combination of both possibilities?

For various CSE tools, some questions raised in the above list of consid-

erations will matter more than others. For example, a collaborative code

editing tool might need to accommodate multiple languages, but may not be

concerned with the representation of multiple views. A sequence diagram-

ming tool might only be interested in the semantic model, and has no concern

for other artifacts or specific languages.

In producing the above listing of tool considerations, it is clear that there

are many aspects to CSE tool design, and that the features a CSE tool is

likely to support must be planned from the earliest stages of tool design. For

CSE tools that are intended to be very general and scalable, it is important

to ensure that each consideration in the above list can be supported. If a

CSE tool can not support different types of tasks, artifacts and group sizes,

then perhaps the tool is not as applicable to CSE as originally intended.

Many of the aspects of CSE tool design presented in the above list are

discussed in further detail during subsequent chapters in this thesis.

4.2.2 Requirements for Large-Scale Development

For the CSE researcher, it is not a trivial task to produce robust and well-

designed tools. From concept to evaluation there will be countless bugs,

design faults and unexpected limitations to encounter. While it is tempting

for the CSE researcher to only produce prototype tools, the aspect of how to

build robust and scalable CSE tools must be addressed for SE to progress.

This is the motivating factor for the development of the Caise framework.

In order to produce realistic CSE tools of any nature, the developers of

the tools will need familiarity with concurrency control, distributed systems,

source code control systems, parsing and semantic analysis of program code,

75

www.manaraa.com

human-computer interaction and design factors, and performance optimiza-

tion just to name a few areas. CSE tools must also support most if not all

of the tool functions listed in Section 4.2.1.

CSCW challenges surrounding CSE tools are immense. When writing

collaborative systems, nearly every core feature requires additional, complex

functionality. Using collaborative text editing as an example, what should

happen if two users type a keystroke at the same time into a shared docu-

ment? If one keystroke effectively cancels out another, how should this be

actioned? Similarly, what should happen if one developer is half way through

declaring a new method in a text editor, and a second developer moves the

containing class to another package through a class diagramming tool? Is

one user’s set of actions lost, or can both users’ coding efforts be preserved?

Given the complexities of CSE tool design, perhaps it is not surprising

that token-passing floor control policies, where only one user can edit a region

of code at a time, are common within the few commercial tools that support

collaborative development.

Industrial-strength tools are difficult to construct from other aspects as

well. Semantic modelling is valuable within a CSE tool architecture, as

explained in Section 4.3, but the construction of a semantic model requires

significant effort. Expertise is required in parsing and code analysis, and

working through a language’s grammar to construct an accurate semantic

analyser is a tedious, difficult and time-consuming exercise.

Standard software development kits, such as the Java SDK [113] and

IBM’s JIT compiler [107], may also struggle to compile the complex source

code that CSE tools consist of. Additionally, code libraries, virtual machines

and operating systems may also struggle to load and execute CSE tools due

to the huge volumes of data associated with large software projects. Converse

to this is the orthogonal requirement of low-latency responses to user events

such as file modifications.

The difficulties in implementing robust CSE tools have received little

emphasis in the literature related to CSE. Researchers, however, need to

be drawn to the fact that implementing real tools is a non-trivial task that

requires careful attention to design, considerable expertise, and a pool of

capable and willing programmers.

76

www.manaraa.com

4.2.3 Threats to Tool Acceptance

There is a risk that when any large system is developed, its uptake may be

less than what the designers had envisaged. For example, a code editor that

will be used on a daily basis is unlikely to gain acceptance if the quality,

functionality and look-and-feel do not meet the majority of any given user’s

preferences.

For SE tools, users are particularly critical of user interfaces. Individ-

ual programmers have strong opinions on which code editor and UML dia-

gramming tools they prefer, and migrating to any new set of tools requires

motivation and training. Even if new types of tools are ultimately more pro-

ductive, the incentive of long-term gain is unlikely to mitigate the cost of

tool usability dissatisfaction by the group of core users.

CSCW research particular to SE has produced findings that tools must

be suited to the needs of the users. Gutwin, Penner, and Schneider, for ex-

ample, interviewed experienced open-source developers within the NetBSD

project [51]. One interesting finding from this study is that the team of ex-

perienced developers were not particularly enthusiastic towards new kinds of

activity awareness tools—rather the developers were already indoctrinated

into reading newsgroups and using social protocols for supporting user aware-

ness, and perceived no strong need for the tools. The participants in this

study suggested, however, that the tools might be of a higher value for less

experienced or new developers to the group.

An effective way in reducing threats to CSE tool acceptance is that of

heuristic evaluations. Heuristic evaluations for CSE tools are discussed in

Section 7.1. The principle of this type of evaluation is to constantly check

tools as they evolve against a set of accepted evaluation criteria. This reduces

the cost of large, formal evaluations at the end of the CSE tool development

cycle—where it is very expensive to make any types of changes—and it also

ensures that the CSE tools will reach suitable standards of design and per-

formance early in the construction process.

77

www.manaraa.com

4.2.4 Future Tool Design

A simplistic approach to further CSE research would be the development of

more prototype tools that fulfill specific niche requirements. It is of concern,

however, that prototype tools are considerably different from those of which

real software engineers will use in practice.

The research in this thesis towards CSE is not based around building yet

another set of tools and finding areas where they might produce favourable

subjective results over conventional tools. Instead, the failings of previous

CSE tools have been carefully studied in order to determine the set of re-

quirements that any successful future CSE tool is likely to conform to.

Beyond the requirements given in this chapter, such as support for CSE

patterns, it is apparent that any successful CSE tool must be of a high quality.

Any tool that has response latencies, user interface design faults, or is not

robust and reliable will inevitably face rejection from its users. Similarly,

the behaviour of CSE tools must be similar to that of conventional tools;

any change in fundamental behaviour could make the tool learning curve too

high. Ideally, CSE tools should give the appearance and behaviour of single

user tools when only one person is actively working on the project.

In order to provide such tools, a complete semantic model of the software

being developed is essential for most purposes. As to be discussed in the

next section, a semantic model, once constructed, is an efficient and effective

way to provide rich feedback information, allow extensibility of tools and lan-

guages, provide fast response times to modification requests, allow multiple

views of artifacts, and support accurate refactoring.

4.3 Semantic Model-Based Software Engineering

To adequately support the patterns of CSE observed within team develop-

ment, tools require more than just source files to provide complete program

construction information. While source files are an important means of input

for a software product, the technology and computational power available to-

day allows for far richer analysis of software. Similarly, to support complex

interactions between multiple tools, source code is not an ideal means of

information interchange.

78

www.manaraa.com

Source code is full of implicit relationships that require thorough seman-

tic analysis in order to transform a sequence of characters into useful SE

information. Powerful IDEs almost certainly require internal construction

of a project’s semantic model to analyse code changes and to provide fea-

tures such as code completion and class hierarchy browsing. For example,

Eclipse [83], Netbeans [114], and Together Architect [46] all have inbuilt

comprehensive semantic analysers to produce a full model of the project’s

software.

Symbol tables [1] are the simplest type of semantic model; these are

used predominantly by compilers to convert Abstract Syntax Trees (ASTs)

into machine or byte code. While symbol tables are an accurate source of

information for compilers, richer types of information are required for tools

that support automated refactoring, metrics analysis, and querying of the

code base.

A full semantic model of the software project where rich types of infor-

mation are available explicitly, such as the relationships between all program

declarations, is an extremely useful asset for most SE tools. A typical seman-

tic model of software contains representations of all of the declared entities

such as classes and methods, along with a map of all relationships, such as

all subclasses for a given superclass and all method invocations of a given

method declaration. To assist in illustrating what a semantic model encom-

passes, a simplistic example of a semantic model is presented in Figure 4.1.

Figure 4.1: A UML class diagram for a simplistic semantic model of software.

79

www.manaraa.com

To fully model of OO software, the corresponding semantic model design

will contain a large number of classes and relationships. A semantic model

for Java 1.4, for instance, is presented in Section 5.3.1. This model, capable

of describing any compilable set of Java source files, contains approximately

thirty core classes and over a hundred relationships between them.

For CSE to be fully supported, tools that operate on semantic models of

projects are likely to be required. It is possible to derive program information

through heuristic approaches such as pattern matching of tokens, but for OO

software, this type of syntactic analysis alone may produce incorrect results.

Only with full semantic modelling can tools determine with confidence the

relationships between concurrent modifications, and the impact of pending

changes.

The technique of using a shared semantic model between developers is

substantially different from all other approaches that I am aware of. For ex-

ample, even though IDEs use a semantic model to provide rich functionality

to each user, they still revert to file-based code repository systems to accom-

modate change propagation between developers. No attempts are made to

inform pairs of developers about overlapping areas of related code, or the

effect that local modifications will have on the very latest version of the

project.

In Section 4.3.1, the implications of building a semantic model for a soft-

ware project are discussed. In Section 4.3.2, a discussion on how a project’s

semantic model can be shared concurrently is provided. In Section 4.3.3, a

discussion is given on how relationships between pairs of users are identified.

4.3.1 Constructing a Semantic Model of Software

The modelling of a project’s semantic relationships is a difficult task. All

source files must be parsed, and a semantic model must be constructed that

records every component within the software, from packages and source files

down to parameters within methods and local variable declarations. Addi-

tionally, all relationships must be determined such as method invocations,

inheritance, method overloading and polymorphism.

Even once a means for semantic modelling is in place, SE tools such as

80

www.manaraa.com

IDEs must also be able to accommodate incremental updates to source files

and other SE artifacts. Therefore, a semantic analyser is required and must

be able to accept continual changes to the underlying model via new versions

of source files and parse trees or direct modification commands. This also

implies that the semantic analyser must be able to reconstruct the semantic

model in real time.

Once facilities are in place to perform semantic modelling, CSE tools can

offer the following functionality:

• Feedback on relationships between code components, such as the callers

of any given method

• User presence calculations between each pair of programmers, based on

their current location within the semantic model

• Immediate modification impact reports

• Accurate metrics of any kind

• Mappings between different views of the semantic model

• Pretty printing and formatting of source code based on the current

state of the semantic model

• Fast and efficient refactoring of semantic model components

By using a semantic model to offer this functionality, tools can be assured

of correct results regardless of the operation. The same can not be claimed

by artifact-based pattern matching techniques. An example of the failings of

pattern matching could be a refactoring operation that renames a method—

unrelated calls to a method of the same name outside the selected method’s

lexical scope may be incorrectly be renamed as well.

A complete discussion of semantic modelling for OO software is presented

by Irwin [58].

81

www.manaraa.com

4.3.2 Sharing the Project Model

Regardless of the type of CSE tool constructed, the research project pre-

sented in this thesis demonstrates how the semantic model of software can

be used as the authoritative source of all project information. This is the

underlying fundamental element of the Caise approach. CSE tools that use

this approach can be classified as semantic model-based rather than artifact-

based.

Given semantic model-based tools, it is the semantic model that should

be shared by all tools and users within the project, effectively making the

artifacts themselves simply views of the underlying semantic model. If real

time sharing of the semantic model is supported, any number of different

views can be supported, with changes in one type of artifact propagated to

all other views immediately.

As described in Section 4.1.1, by sharing and updating the semantic model

in real time, merge conflicts are avoided. Unnoticed transactional conflicts,

such as when two developers mistakenly break a code dependency because of

conflicting tasks, are also less likely due to the possibility of feedback mes-

sages highlighting current dependencies within the given scope, and immedi-

ate notification when such dependencies are broken. By sharing the project’s

semantic model, CSE tools also receive all the other benefits described in Sec-

tion 4.3, including deep metrics information and accurate refactoring mech-

anisms.

The essential concept of semantic model-based tools is that instead of

sending entire batches of source files at a time back to a central repository,

tools simply report what they are doing at a fine-grained level to the semantic

model. Parsers and analysers, normally housed within the semantic model,

can convert tool actions into semantic model modification actions. Changes

to the semantic model are then propagated out to all other participating

tools in the project. As long as the tools update the semantic model at a

fine granularity, there is little or no chance of conflicting actions, at least at

a syntactic level.

Despite the relatively simple idea behind sharing a project’s semantic

model of software, it is considerably challenging to design and implement

82

www.manaraa.com

semantic model sharing if fully synchronous tools such as shared text editors

are involved. If the update granularity is too coarse, there is a risk of trans-

actional conflicts, such as a method being renamed by a diagrammer just

before a text editor submits the method body—this would result in a loss of

work if not specifically guarded against.

An illustration of how the Caise framework shares its semantic model and

maps between different views is given in Section 5.3.1. The Caise framework

is the first known CSE system to use the approach of a shared semantic model

of software between tools.

4.3.3 The Code Neighbourhood

Given the ability to atomically integrate code changes as they occur, as

discussed in Section 3.4.2, and the ability to translate artifact modifications

into semantic model translations, as discussed previously in this section, all

users effectively work on the single instance of the project in real time. With

this comes the ability to immediately detect areas of interest that are common

to a set of users as they navigate through the software under development.

An example of a shared area of interest within software is presented

in Figure 4.2. In this example, user Carl is editing the method named

update() within class AnimatedSprite. At the same time, user Wal is edit-

ing properties within the class DynamicSprite, which is the superclass of

AnimatedSprite. The superclass of Wal’s class is named Sprite, which

currently has no superclass declared.

With or without the presence of tools that operate on a shared semantic

model of the project’s software, it is clear that there is an overlap between

the proximities of Carl and Wal at this point. Both users should be closely

coordinating their actions, as any modification that Wal makes could have

a significant impact on the class that Carl is editing. For example, if Wal

changes any of the properties in DynamicSprite, these changes are immedi-

ately inherited by AnimatedSprite due to the semantics of OO languages.

Similarly, if Wal declares a method named update() in the DynamicSprite

superclass, this may change the number of invocations made to the method

named update() that Carl is currently working on.

83

www.manaraa.com

Figure 4.2: The combined code neighbourhood for two developers, using
UML notation.

An appropriate term for this area of related code is a Code Neighbourhood.

A code neighbourhood is the entire region of code that is semantically related

to a user’s current area of focus. This can also be viewed as the scope of

effect for any given point in the software project, taking into account lexical

scope, inheritance, method invocations, composition and all other identifiable

semantic relationships within the project’s software structure.

If real time support exists for a shared semantic model of a project’s

software, the identification of the code neighbourhood for any given user

84

www.manaraa.com

can be calculated immediately as the user navigates from one section of

code to the next. Without atomic integration of changes, only the code

neighbourhood for the last committed version of the project’s source files

can be calculated.

Given that the code neighbourhood for any user can be calculated in real

time for CSE tools that use a shared semantic model, only a simple calcu-

lation is required to determine if two users are within a connected region

of code, or in other words, are semantically related to each other. This is

a very important advantage of real time CSE tools over their conventional

counterparts: developers can be alerted to overlapping areas of interest im-

mediately, rather than on reflection during conflict resolution in response to

a failed repository check-in or build.

Use of the Code Neighbourhood

The ramifications of being able to automatically calculate code neighbour-

hoods and inspect for overlapping areas of interest are great. As the example

presented in Figure 4.2 suggests, for a complete understanding of the critical

areas related to any one line of code, tools need to be aware of the logical

composition of the project, not just the declarations contained within the

lexical scope. In fact, tools may need to look much further than the im-

mediate logical structure such as the inheritance hierarchy; tools often also

need to identify which other parts of the system depend on the main classes

in focus, and in turn, which areas on the project these classes depend on

themselves.

In OO software there are many implicit and subtle but important rela-

tionships to identify and understand. Even the most proficient groups of

developers will occasionally make incorrect modifications to a project be-

cause a subtle dependency between units of code was overlooked. This is

why tool support for shared code neighbourhoods is important—developers

do not necessarily have to maintain a mental picture of the entire semantic

model, rules of the language and current locations of all other users; CSE

tools have the potential to proactively provide context-specific information

on related areas of code.

85

www.manaraa.com

It would be very challenging to predict conflicting modifications between

related areas of code before they happen, but CSE tools can alert users to

the semantic proximities of others in real time. This is a notable difference

between conventional, repository-based tools and real time semantic model-

based CSE tools.

User Interface Support

In Section 6.2.3, a text panel is demonstrated that provides extensive user

presence information between pairs of users based on the semantic model of

any Caise-based project. Multi-user widgets to augment SE tools are also

presented in Section 6.2.3. Again, these components operate on information

related to the code neighbourhood rather than physical proximities of users.

Other tools such as Palant́ır [98] and Tukan [100] also provide a degree of

code neighbourhood information, but within the Caise framework, informa-

tion is based on a full semantic model, giving the ability to represent even

the most subtle types of relationships in real time.

4.4 Awareness Support

There are many different types of information that developers may be in-

terested in during the course of any software development phase. From the

previous section, it is clear that semantic model-based tools can provide feed-

back on current modifications, the actions of other users within the project,

and metrics information. In this section, the main types of information avail-

able for CSE tools are presented, and a discussion is given on the implications

of presenting these types of information to the user.

4.4.1 Types of Awareness

Regardless of the underlying architecture, many types of information can be

generated as developers work on a set of given tasks collaboratively. CSE

tool developers need to consider which types of information are important

to their users for subsequent tool integration. The following list outlines the

range of different types of information that developers might be interested

in. This range has been categorised into view, semantic model, and workflow.

86

www.manaraa.com

View Awareness

View awareness represents feedback related to the modification of a SE ar-

tifact that does not immediately or directly map into a modification of the

project’s underlying semantic model.

Physical Proximity The physical locations of other developers within the

software project is an important aspect of awareness. Physical prox-

imity refers to the distance from one developer to all units of code

being edited by others at any given point in time. For a text editor,

the physical locations of a user are simply the cursor positions and ar-

eas of current focus within each opened artifact. For a class diagram,

the physical locations of a user are likely to be the currently selected

methods or classes within the diagram.

View Modification The modification of a view within a CSE tool, with-

out necessarily affecting the underlying semantic model, is a common

operation. An example of this would be changing the layout of classes

within a UML diagramming tool. Another example could be the mov-

ing of method declarations within a source file.

To support the propagation of changes in views, a decision in advance

needs to be made on whether the view is shared between all users, or

each tool is responsible for its own view. For shared views, change

events need to be propagated to all other CSE tools within the project,

allowing them to integrate this change with their own views. For tools

that allow individual views, a separate mapping must be maintained

for each tool, and changes in local views will not normally require

propagation to any other parties.

Textual Modification An elementary type of feedback within CSE tools

is that of textual modification, independent of any underlying semantic

change to the software. For example, if two users are editing the same

source file, how are these edit events propagated between views? Are

views updated using keystrokes as the atomic unit of action, or are

displays updated only after a fixed time period or burst of activity? If

87

www.manaraa.com

textual modification is not propagated in a fully synchronous manner,

then a conflict resolution facility might be required in the event of

interleaved modifications.

If a strict floor control policy is used such as token passing, the im-

mediate propagation of textual modification events is relatively easy

to support. Alternatively, if fully synchronous editing of code is pro-

vided with immediate propagation of changes, a reliable model-view-

controller design approach is likely to be necessary.

Code Neighbourhoods Within a software project, many types of seman-

tic relationships exist such as inheritance, association and aggregation.

When two or more developers are modifying or inspecting units of

code that are semantically related, a transient relationship now exists

between the developers, termed as the code neighbourhood. Given an

overlap between code neighbourhoods, the developers must apply their

changes with caution and greater communication, otherwise a transac-

tional conflict is possible during periods of concurrent modification.

For direct semantic relationships, such as a superclass/subclass pair-

ing, it is wise to avoid making concurrent modifications within the two

classes due to the high coupling and inter-relationships. Other types

of relationships, however, are more subtle than this and not immedi-

ately noticeable. For example, renaming a property in one class of a

given package might cause a problem for a method in another class in a

different package that has access to this property through an inherited

superclass. While semantic analysis can detect this type of relation-

ship, a DOI mechanism might be required to restrict the number of

peripheral relationships identified between two or more concurrent de-

velopers.

Semantic Model Awareness

Semantic model awareness represents feedback related to a change in the

semantics of the software project.

88

www.manaraa.com

Semantic Changes Independent of the tool type, eventually a sequence

of events will lead to a modification of the underlying semantics of

the project’s software structure. A new statement from within a text

editor might add a method call. A drag and drop event within a class

diagramming tool might establish a new inheritance relationship.

In some situations, changes to the underlying semantics of the software

may not require reporting. For example, if a new method is added

to a source file through a text editor tool, it is questionable whether

any other types of tools require feedback above that of the new method

coming into view. In other situations, developers and project managers

might be very interested in significant changes in a project’s semantics,

particularly for projects that are mature and are not expected to un-

dergo any further substantial development.

Impact Reports Beyond the actual identification of a project modification,

it is also desirable to be able to immediately discover the effect of the

modification. It is useful to know if a modification, such as renam-

ing a method without refactoring the existing calls to that method,

has broken the project. Project modifications that result in a fix to

outstanding compilation errors are equally as important.

Aside from compilation errors either being introduced or removed, an

additional type of impact report-based awareness is that of syntacti-

cally and semantically correct modifications. When semantically re-

lated units of code change, it may also be of interest to developers. For

example, a developer might be working on a given method. If a second

developer makes a legal change to a class elsewhere that the method

depends on, both parties might want to talk about the modification

regardless of whether or not the compilation state was affected.

Software Metrics Analysis of metrics can be useful to highlight both good

and bad areas of software design. Traditionally, software metrics are

calculated as a batch process at the end of a development phase or upon

code integration. Within CSE tools, however, it is possible to calculate

89

www.manaraa.com

metrics in an event-based manner whenever the state of the software

changes, with the information propagated to relevant developers.

For some developers, notification of changes in software metrics values

will be immediately useful. For other developers, more subtle types of

feedback might be required such as background visualisations and cues.

Test Case Results Automated testing of software is becoming increasingly

popular. Regression testing, for example, applies a common set of unit

tests to software on a regular basis, and if test results differ from the

expected values, a warning is issued.

Given CSE tools, testing could be automated upon changes to a shared

semantic model, or the conventional approach of batch-testing could

still be used. Regardless, information about failed tests is certainly

worth considering for integration within CSE tools. If users are working

within an area of code where a test case has recently failed, it might

be in the developers’ interests to be made aware of this.

Similarly, if the data used within the test cases has been changed,

again, users working within areas of code related to the affected tests

may require notification of the change.

Workflow Awareness

Workflow awareness represents feedback related to the modification of SE

artifacts not directly involved with the project’s semantic model.

Bug Catalogs By the very nature of software bugs, often no direct, detailed

relationship exists between entries in bug tracking databases and their

related areas of code. But, for documented bugs that can be attributed

to specific packages, classes or methods, it is possible for tools to gen-

erate feedback relevant to users who enter those units of code. This

type of feedback may become particularly useful when the bug docu-

mentation and its related units of code are being modified concurrently

by independent developers.

90

www.manaraa.com

Documentation Changes Documentation libraries such as Javadoc have

direct relationships with the code, diagrams and underlying semantic

model of the project’s software. Again, changes to the documenta-

tion might have important ramifications for users of the related code

components, and vice versa. If a developer is editing or accessing a

method, class or field that is published within a document library, and

the documentation is also currently under modification, immediate and

directed feedback on changes to that documentation might be valued.

As can be seen, the range of different types of feedback information is

great. It is unlikely that any one tool will need to support all of these

different types. Identification of the main types of awareness information to

be supported for a given CSE tool, however, is essential during the design

phase.

4.4.2 Media Richness

Once the types of feedback relevant to the CSE tool have been determined,

presenting the information to the user in a correct and acceptable manner

is a challenging task. Work towards facilities to support appropriate means

of feedback within collaborative systems continues today, particularly within

projects such as GroupKit [95]. Considerations include not unduly inter-

rupting the user, making the information as relevant as possible, minimising

the amount of screen space required to present feedback, and allowing for

customisation of the level of feedback.

A topic closely related to the support of appropriate CSE tools is that of

media richness. This concept, as introduced by Reichwald, Moeslein, Sachen-

bacher, Englberger, and Oldenburg [93], is presented in Figure 4.3. From

this figure, it is apparent how the richness of the presentation media must

be matched to the complexity of the task, otherwise an over-complication

or under-simplification can take place. While the concept presented in this

figure is for general collaboration, the principle of matching the media to the

task is also true for computer-supported CSE.

As an example of how media richness should be considered within the

context of CSE, a simple task to edit a few lines of code that is completely

91

www.manaraa.com

Figure 4.3: Media Richness Theory: reducing ambiguity by media selection.

independent from all other concurrent changes does not require vast amounts

of unrelated feedback about the actions of other users. Conversely, it is

argued that within conventional SE tools, the media is not rich enough to

convey the full implications of complex software modifications within a group

project [99]. For the CSE researcher, tools must be designed where the levels

of feedback match the task at hand.

4.4.3 The Collaborative Spectrum

Real time collaboration within SE tools is gaining popularity: IDEs to add

synchronous support for collaboration during 2005 alone included Eclipse [66],

Borland’s JBuilder [12], SubEthaEdit [85] and Sun’s JSE [115].

In a manner similar to the determining the correct types of feedback and

levels of media richness, CSE tool developers also need to determine just how

collaborative their tools should be. Again, there are a range of choices.

A spectrum of possible levels of collaboration is given in Figure 4.4. At

one end of the spectrum, tools are completely free, such as shared white-board

applications. These types of unrestrained tools typically work on unstruc-

tured and transient documents.

92

www.manaraa.com

Figure 4.4: The collaborative spectrum of software engineering.

At the other end of the spectrum, tools may maintain artifacts that are

completely locked. These types of tools work on persistent artifacts that

typically have a rigid structure such as database records or source files. Such

tools can usually guarantee the integrity of the documents that they operate

on, but these tools struggle to provide synchronous file sharing.

On this spectrum, it is also shown where CSE tools are likely to be placed

in terms of collaboration. For typical CSE tools, some control over the gran-

ularity and order of collaborative modifications may be required to avoid

situations of undesired mêlée. However, it is not desirable to force tools into

completely locking artifacts, otherwise difficulties related to reduced aware-

ness are encountered, including conflicting modifications and merge conflicts.

Summary

The purpose of this chapter is to promote the careful consideration of all

aspects pertinent to CSE tool design. The construction of adequate solutions

for CSE tool support is preferred over the mechanical development of endless

numbers of CSE tool prototypes that have limited chance of success.

A key conclusion drawn from this chapter is that there are many design

aspects to be considered when constructing genuinely useful CSE tools, based

on patterns evident within CSE. The design approach taken to accommodate

large numbers of developers and code bases requires careful balancing, with

equal consideration of conflicting factors such as awareness of others versus

uninterrupted modes of work.

In the remainder of this thesis, it is demonstrated that powerful real time

CSE tools can be constructed rapidly given a supporting framework, and

93

www.manaraa.com

that such tools have measurable benefits over conventional SE tools. The

framework-based design approach to supporting CSE tools is described in

Chapter 5. In Chapter 6, several CSE tools are presented and discussed.

CSE tool evaluation is presented in Chapter 7.

94

www.manaraa.com

Chapter V

The Caise Framework

“The vision is that, well before the seventies have run to completion,
we shall be able to design and implement the kind of systems that are
now straining our programming ability, at the expense of only a few
percent in man-years of what they cost us now, and that besides that,
these systems will be virtually free of bugs.”

Edsger W. Dijkstra,

1972

In this chapter, the Caise framework is introduced. In Section 5.1,

the need for a framework to construct realistic CSE tools is discussed. An

overview of such a framework, Caise, is presented in Section 5.2. The archi-

tectural design of Caise is detailed in Section 5.3.

5.1 The Need for a Better Tool Support

The authors of the Concurrent Versioning System (CVS) say “CVS is no

substitute for communication” [9]. This statement reflects the fact that code

repository systems are not designed to support communication, cooperation

and coordination of tasks.

The goal for Caise-based CSE tools is to allow programmers to work

collaboratively without sacrificing communication. Communication is im-

portant to avoid coding conflicts, share ideas and resolve problems. Caise

achieves this by keeping all programmers synchronised in real time, and at

the same time providing user awareness and project state information to

individual tools. Caise-based tools support what code repositories do not

provide: communication between developers and tools during fine-grained

real time collaboration.

95

www.manaraa.com

Caise-based CSE tools operate by exposing all developer actions, such

as source code modifications, immediately. For developers working on well-

partitioned SE tasks, this allows merge conflicts to be avoided, and transac-

tional conflicts can be detected immediately. For developers working on the

same artifact concurrently, this forces each tool’s view of the artifact to be

immediately updated upon any modification.

While it may seem distracting for some users to work in a fully-synchronous

mode, the premise of my research is that immediate awareness of the actions

of others promotes good SE. This premise has been asserted elsewhere [99],

and in Section 7.3 I show that immediate propagation of changes between

developers raises no significant usability or coding issues between pairs of co-

located programmers working on several common coding tasks, even when

editing the same lines of source code concurrently.

5.1.1 Motivation

Many prototype CSE tools, such as those discussed previously in this thesis,

are well suited to a single task or development methodology. Unfortunately,

they are for the most part fixed and non-extensible, despite the considerable

development efforts during tool construction. A key objective of the research

in this thesis is to reduce the barrier of high construction costs for CSE

tools by providing a framework that enables many different types of CSE

tools to be developed rapidly. This objective is met by separating concerns

such as tool functionality, user awareness mechanisms, parsing and semantic

analysis, and concurrent artifact modification.

To produce more comprehensive SE tools, there has been much recent

development towards collaborative add-ons and toolkits for IDEs. Examples

include Jazz [21] and Palant́ır [98]. Unfortunately, these collaborative exten-

sions are still based on conventional file sharing technology such as source

code repositories. While they may provide useful information to collaborat-

ing users, the underlying IDEs remain predominantly focused on single-users.

Providing adequate tool support for CSE is a hard problem. After years

of research, as outlined in Chapter 2, it appears that there is no quick fix in

improving the levels of collaboration support in conventional SE tools.

96

www.manaraa.com

In order to truly progress, it is likely that the complex and implicit rela-

tionships in the software being developed need to be modelled, as discussed

in the previous chapter. It may also be necessary to analyse the locations of

users within the software project in order to detect areas of potential conflict

and overlapping duties. Single user IDEs adequately expose relationships

between different regions of code, but comprehensive CSE tools need to in-

corporate the dimension of multiple users as well.

Extensibility is a key property of any SE tool, collaborative or conven-

tional. In terms of CSE tools, support for extensibility can not be overlooked;

a tool that can not be customised or evolved is unlikely to gain widespread ac-

ceptance. Similarly, if CSE tools are developed for one specific process, their

usage may be unnecessarily limited. Ideally, CSE tools should be adaptable

for new SE processes as they come into mainstream development practice.

Any functional and usable CSE tool is likely to be complex in design, as

discussed in Section 4.2.4. Similarly, as discussed in Section 4.2.2, it is con-

siderably high-risk to construct one large monolithic system where every SE

task is supported. From Section 4.2.1, it is also apparent that many aspects

of tool design are considered during CSE tool construction. In Section 4.1.2,

several design approaches were discussed that often fail to produce extensible,

scalable and general-purpose CSE tools. In this chapter a framework-based

approach for CSE tool design and support is presented that allows such tools

to be developed.

The decision made within this thesis, based on the aspects identified in

Chapter 4, is to provide a framework with the potential to support nearly

all types of CSE tools, tasks and people. The framework, based on a shared

semantic model of software and the propagation of atomic-level events, is

an approach entirely different to the construction of task-specific tools or

the augmentation of conventional tools with CSCW toolkits. A framework

based approach, if implemented correctly, has the ability to support the

rapid construction of a virtually endless number of quality CSE tools that

can operate together in real time.

97

www.manaraa.com

5.1.2 Framework-Based Tool Support

The development of the Caise framework was a major undertaking in terms

of design and development, but the premise was that such a framework would

be valuable to the progress of CSE if implemented correctly and thoroughly.

A key objective of the research in this thesis is to find means to provide

proactive information to users as they develop software collaboratively. This

is opposed to the conventional approach of reaction-based problem resolution

stemming from failed repository commits and project build errors.

The initial approach for supporting proactive CSE was to produce col-

laborative tools through conventional means, such as augmenting standard

SE tools with Groupware capabilities. I discovered that this approach was

not feasible due to the limited support that CSCW has for highly-structured

documents such as source code, the lack of support for multiple views of

artifacts, and the inability for CSCW technologies to identify relationships

between different units of code.

Other methods for CSE tool support, as outlined in Section 4.1.2, have

also met limited success. CSCW approaches to CSE increase the commu-

nication bandwidth, but are not scalable or necessarily appropriate in all

development scenarios. Conversely, using CVS and single-user tools appears

initially scalable, but communication is crippled and code integration can

be highly problematic. Software engineers require a design that provides

the best of both worlds—a high communication bandwidth and structured

control over software artifacts.

For the work in this thesis, a totally different means to facilitate CSE tool

construction has been taken, in the form of a fully-synchronous approach.

The general schematic view of such a framework, Caise, is presented in

Figure 5.1. The key concepts of the framework is a shared set of artifacts

that individual tools can edit in real time, and a server that coordinates

the actions of each user and tool. By way of a framework, different types

of CSE tools can operate together on a common project in real time. The

architectural details of the Caise framework are presented in Section 5.2.

To address the difficulties in constructing genuinely useful and usable

CSE tools, the Caise framework was designed to support a range of different

98

www.manaraa.com

Figure 5.1: A general schematic representation of the Caise framework.

types of CSE tools. Given a framework that provides common collaborative

services through a central server, the premise is that it should be possible to

rapidly construct tools of many different types. This premise is demonstrated

in Chapter 6, where simple construction of several different types of CSE tools

from within the Caise framework is demonstrated.

A framework approach was favoured as it allows the core Caise architec-

ture to be relatively simple; an over-architected, heavyweight CSE framework

may be unworkable and present too much of a learning curve for developers

of practical CSE tools. By default, the Caise framework does very little;

it just supports generic sharing of artifacts, a basic event model, interpro-

cess communication, and facilities for incorporating user-defined operations.

Developers have the duty of providing specific tools, language support, and

analysis routines through a plug-ins facility. Extensions that could be in-

corporated also include external components such as document libraries and

bug tracking systems.

It is possible to support a range of new collaborative services through

the Caise framework. These include real time editing of artifacts, shared

semantic modelling of the software project, fine-grained locking of the se-

99

www.manaraa.com

mantic model rather than file-based version control, recording of the full

development activity of the project with subsequent visualisations, real time

user awareness information and feedback, multiple language support, mul-

tiple views of artifacts, no limitations on the types of applications that can

work together on the same project, allowance for any number of participating

users, and dynamic metrics gathering.

The implementation benefits for CSE tools using framework-based sup-

port became apparent as soon as the Caise framework was operational. By

having a central server controlling the activity of individual tools, artifact

modification requests can be serialised in a stable order, which makes it pos-

sible and straight-forward to support real time editing, including facilities for

the challenging problem of collaborative undo [119, 90, 108]. Additionally,

with the majority of the functionality implemented within the server, client

tools are relatively simple and light-weight.

It is possible to implement comprehensive CSE tools in ways other than

using a collaborative framework such as Caise. As described in the remain-

der of this chapter, however, the Caise approach works well both theoret-

ically and in practice. The Caise approach of a shared semantic model,

propagating atomic events, a central server, and a protocol for tool interac-

tion can be used as a blueprint for other collaborative frameworks.

5.2 Overview of the Caise Framework

The general concept of the Caise framework is presented in Figure 5.2. Tools

can join a Caise-based project and begin editing artifacts using the Caise

tool protocol, as presented in Section 6.2.4. An API is available to access

the underlying semantic model and project change history, as presented in

Section 6.2.2. CSE tools can be developed rapidly, as long as the Caise tool

protocol is adhered to and the semantic model is used as the authoritative

source of all project information.

The design philosophy of Caise and its associated tools is the favouring

of continual communication and conflict resolution over working in private

with delayed identification of coding problems. Within the Caise frame-

work, development in private on a separate copy of source files followed by a

100

www.manaraa.com

Figure 5.2: Artifact modification within the Caise framework. Internal to
the framework is a constantly-updated semantic model, which represents
the authoritative structure of the software project, and is used to provide
accurate, fine-grained feedback information to participating tools.

subsequent merging process is not supported explicitly. Rather, all changes

to a project’s artifacts are propagated to the entire software development

team as they happen.

A key aspect of the Caise framework is the ability to generate detailed

and accurate information related to user activity, impact of changes, and

relationships between users. As all actions of every user are observed by the

central server, and all artifact modifications are semantically analysed, it is

possible to explore the development history of a software project down to the

finest level of detail.

The ability to share artifacts in real time, introduce new types of arti-

facts, map between alternate views of artifacts, and introduce new types of

feedback allows the types of tools discussed in Section 4.2.1 to be supported.

Additionally, given the rich semantic model of software housed within each

Caise-based project, any type of feedback information listed in Section 4.4

can be generated.

5.2.1 Architecture

Caise is not a specific tool or IDE. Caise provides CSE services and a

semantic model of software, allowing tools to collaborate in real time. Tool

developers can use Caise in any way they see fit, and extend the framework

if desired, such as adding new types of feedback information for CSE tools.

101

www.manaraa.com

The Caise framework is simply one implementation of a system that

incorporates the functional aspects listed in Section 4.2.1. Instead of building

specific tools to match a given list of requirements, a framework has been

constructed that provides essential services for CSE tools, allowing any type

of CSE tool to be accommodated.

During initial research into CSE tools for this thesis, I realised that a large

amount of processing is required in order to analyse source code as it evolves

in real time. This was the main factor governing the decision to implement

a collaborative framework with a central server. Therefore, the Caise server

is essentially a shared IDE engine, where each Caise-based tool is a client.

The only special requirements are a low latency network connection, such as a

switched Ethernet LAN, and relatively powerful hardware to host the Caise

server. The resource requirements for the Caise framework are discussed

further in Section 7.4.

Caise is a large system, and was designed to meet a well defined set of

requirements. It is extensible, customizable, and highly versatile. To demon-

strate the completeness of the framework, a number of different types of CSE

tools are presented in Section 6.3. Support for multiple languages is discussed

in Section A.2. It should be noted that while the Caise framework can sup-

port any number of different languages, individual projects will typically be

based upon a single language.

A Code-Centric Design

The Caise framework is designed as a code-centric system; the semantic

model at the core of the framework, to be described in Section 5.6, represents

the structure of a software project that is typically derived from the software

project’s source files. While corresponding alternative views of source code,

such as UML class diagrams, can also be based directly from a semantic

model of software, this does not imply that all types of SE artifacts can

be supported natively. For example, a UML diagramming tool can obtain

most of the information that it requires for a component diagram [38] from a

semantic model, such as class and package names and associations between

packages. However, higher level component diagram concepts such the key

102

www.manaraa.com

components and connections of the system can not be automatically derived

as they are not explicitly or implicitly represented within the semantic model.

The code-centric approach of Caise is well suited to a framework which

supports CSE development tools; many popular tools in use today are code-

centric, such as Eclipse and Visual Studio, and are often used in code-only

modes. The majority of CSE tools are envisaged to be at the implementation,

testing and maintenance stages of the SE lifecycle, and will subsequently be

based upon the direct manipulation of source code and semantic model-based

diagrams. A code-centric approach allows CSE tools to interact with other

tools and the underlying framework without any need for code annotations

or complex messaging interfaces. Additionally, the semantic model can be

used as the canonical source of information, ensuring consistency between

tools.

By having a code-centric framework, code-centric tools such as text ed-

itors, debuggers, and class diagramming tools are the easiest to support.

Tools such as state and interaction/sequence diagrammers are also well sup-

ported, but will require some additional information, such as layout data, to

be supplied by external means. The most complex types of SE tools to sup-

port within the Caise framework are those related to workflow, such as use

case diagrammers, as concepts such as process flows, actors and customers

are never modelled within the core software structure. In these cases, the

Caise framework can be extended by introducing new types of tool artifacts,

as discussed in Section A.3.3, by extending the semantic model beyond the

source code level, to be discussed in Section 5.3.1, or even by using a different

semantic model developed specifically for this class of tool.

Software Engineering Methodologies

The Caise infrastructure does not impose a specific methodology onto Caise-

based tools; rather tool developers can implement particular methodologies

on top of CSE tools if and when required. A key design decision was to

avoid enforcing any particular programming paradigm—the Caise frame-

work’s key objective is to support generic collaborative software development.

Processes such as RUP or XP can potentially be enforced by policies within

103

www.manaraa.com

the Caise server, and designers of Caise-based tools are free to implement

any process-specific mechanisms within their tool set.

Caise is ideal for supporting distributed pair-programming. Using Caise

this practice can be referred to as N-programming, as there is no theoreti-

cal limit to the number of people and types of tools that can collaborate

at any point in time. This is a significant advantage over conventional

pair-programming; up until now collaborative technology limitations have

restricted programmers considerably [92].

Degree of Collaboration

It is difficult to provide a fully synchronous service for the editing of source

files and other SE artifacts. The few tools that do support collaborative

editing, such as Borland’s JBuilder [12], work on very restricted floor control

policies such as token passing. The aim of the Caise framework is to support

any number of collaborating users in real time.

To illustrate the degree of collaboration offered by Caise, CSE tools rel-

ative to the collaborative spectrum are presented in Figure 5.3. As indicated

in this figure, Caise-based tools are afforded some variation in the amount

of collaboration they support. Most CSE tools, for example, are likely to

support full collaborative editing of artifacts, but some tools might choose

to propagate only significant events such as completed method bodies.

Figure 5.3: The Caise framework in the context of the collaborative spec-
trum.

As also indicated in Figure 5.3, Caise-based tools are not designed to

support conventional modes of SE such as optimistic or pessimistic file lock-

104

www.manaraa.com

ing. Conventional SE is based upon the copy, modify and merge idiom of

code repository systems, but with the availability of fully synchronous arti-

fact editing, Caise tools typically operate on central, shared artifacts, with

social protocols to facilitate mediation between developers.

5.3 Architectural Design

An architectural overview of the Caise framework, including participating

CSE tools, is presented in Figure 5.4. This figure demonstrates Caise-based

tools that update artifacts (1), which are turn delivered to the Caise server.

The server analyses the artifacts (2) and updates the underlying semantic

model (3). Updated artifacts are returned to each CSE tool (4a), and dy-

namic feedback such as user proximity information is also returned in an

event-based manner (4b). Upon receipt of updated artifacts, tools adjust

their local views of the project (5).

Figure 5.4: An illustration of the Caise framework and participating tools.

To explain the relationships between artifacts, tools, the semantic model

and feedback plug-ins, Figure 5.5 illustrates the key cardinalities between

components within the Caise framework. Users within a project can operate

105

www.manaraa.com

many different types of tools at the same time. A tool typically operates on

one artifact type at a time, although multiple artifacts of the same type may

be accommodated. An IDE might incorporate several tools in one applica-

tion, but this is a function independent of the Caise framework. Feedback

plug-ins are specific to a semantic model, and may produce general feed-

back information or be tool-specific depending on the implementation. Each

project has a single instance of a semantic model, but the Caise server can

support more than one type of semantic model.

Figure 5.5: Relationships between key components of the Caise framework.

The Caise framework itself makes no assumptions about the types of

tools, semantic models and feedback plug-ins. Its role is to coordinate the

components of the framework based on well known interfaces, to support

communication between tools, to facilitate the propagation of events between

tools and the server, and to provide storage and shared access to Caise-based

artifacts. Analysers and feedback plug-ins support tool and language-specific

operations.

106

www.manaraa.com

5.3.1 The Project Semantic Model

The need for full semantic modelling of a software project’s structure was

discussed in Section 4.3. Advantages of semantic modelling include being

able to rapidly refactor units of code, accurately query the semantic model

in real time, and determine relationships between users and units of code.

A semantic model for each Caise-based project is stored within the Caise

server. The concept of using a shared semantic model to facilitated collab-

oration between SE tools is new to the field of CSE, and is a key research

achievement within this thesis.

A semantic model represents the entire program within a Caise-based

project. As discussed in Section 4.3, a semantic model represents all software

entities such as packages, classes and methods, and the relationships between

them such as method invocations and code dependencies.

A key feature of the design of the Caise server is the decoupling of lan-

guages and the semantic model of software. While source files and Caise-

based tools might be of a specific language, the semantic model is language-

independent. This means that tools which inspect the semantic model, such

as the feedback plug-ins presented in Section 6.2.5, can be written indepen-

dent of specific languages, increasing their amount of use within the Caise

framework.

As the research for this thesis is based primarily for the support of Java

and Java-like languages, the main semantic model used within Caise at

present is OO based. This semantic model is similar to that of Microsoft’s

.Net framework [20], where multiple languages can also be encompassed. For

languages that are fundamentally different from the OO paradigm, another

type of semantic model can be introduced into the Caise framework, or the

existing semantic model can be expanded.

The current semantic model of OO software offered by Caise provides

full support for Java 1.4. Work is near completion [79] for a .Net 2.0 version,

including Generic Types. The architectural diagram for the Java 1.4 semantic

model of OO software is presented in Figure 5.6, as reproduced from [60].

The semantic model presented in Figure 5.6 was taken from the research

of Irwin and Churcher [60]. A fine-grained semantic model of software was

107

www.manaraa.com

Figure 5.6: A semantic model of object-oriented software [60], in UML no-
tation.

108

www.manaraa.com

required for the construction of the Caise framework, and instead of writing

one specifically, a new version of the JST [60] semantic model was formed.

The JST semantic model was applicable because it accurately models Java

programs based directly from the standard Java exposition grammar [47],

and it has a logical API for semantic model navigation. Extensions required

for use within the Caise framework included supporting incremental updates

to the semantic model, extending the explicitly mapped relationships within

the semantic model, and calculating a list of semantic changes based upon

semantic model updates.

The semantic model of OO software within the Caise framework is de-

signed for inspection, incremental updating, and user querying. This is in

contrast to the semantic models within Borland’s Together Architect and the

Eclipse IDE; these semantic models provide limited programmatic access and

have little documentation. Additionally, the semantic model within Caise

supports direct modification of the entire semantic model.

Example routines accessible by the API for the Caise semantic model of

software include: lookupType(), get/addPackage(), get/addDeclaration(),

get/addSourceFiles(), get/addType() and get/addMethod(). These rou-

tines are as accurate as any compiler, and are callable from any participating

Caise-based tool.

The Caise semantic model of software models Java source code down to

the statement level. The only low-level constructs not explicitly modelled are

control statements such as if statements, for loops, and switch statements.

This design choice was made by the author of the original semantic model,

and the inability to model these low-level concepts does not affect the Caise

framework in any significant way. Declarations and uses of all types are still

modelled, even down to the local variable level; for example, an if statement

is not directly modelled, but any uses of variables—including declaration and

assignment within the statement—are represented.

A JavaDoc listing of the API for the semantic model of software is avail-

able from Appendix H. Caise-based CSE tools (presented in Chapter 6.3)

and server applications (presented in Appendix A.4) can access the semantic

model directly, but other tools may choose to download a snapshot of the se-

mantic model via the Caise tool API, and inspect the semantic model offline.

109

www.manaraa.com

The Caise event log, as presented in Section A.5 may also be downloaded

for user activity and change history information.

It is expected that the current semantic model within Caise can be used

by tool developers for most languages in common use today. The semantic

model can be extended as required to encompass other concepts, however,

such as low-level control statements or abstract components such as UML

actors and state transitions. If a Caise-based project requires a different type

of semantic model, most likely due to an unconventional language or the use

of Caise for a completely different domain such as web site development,

any existing tools and feedback plug-ins that are required for use must be

updated according to the new semantic model’s properties and structure.

Semantic Analysers

Semantic analysers within the Caise framework are responsible for building

and maintaining the semantic model for each software project. The primary

task of Caise-compliant analysers is to inspect parse trees and insert any

identified declarations into the project semantic model.

At present, only one type of semantic model exists for the Caise frame-

work. This is the general semantic model of OO software, as presented in

Section 5.3.1.

Two languages are currently supported in Caise, namely Java and Decaf.

Therefore, a corresponding semantic analyser for each language exists as

a Caise-based plug-in. As each language can be mapped to the general

semantic model of OO software, both analysers populate an instance of this

general semantic model.

Much work has to be done by the analyser in order to build a semantic

model of software. Most of this work, however, can be performed in a lan-

guage independent manner. Therefore, language-specific analysers are not

solely responsible for constructing a semantic model of software. The Caise

general semantic model not only contains the declarations and relationships

within software project, but also the routines to look up types and construct

much of the semantic model itself.

Work performed by the general semantic model of software includes re-

110

www.manaraa.com

moving components declared in the semantic model from previous versions

of parse trees, cross referencing the semantic model upon the introduction of

new versions of parse trees, and calculating semantic changes in the semantic

model.

The semantic model’s methods for rebuilding itself are called every time

a new parse tree appears from a tool, or a tool issues a semantic model

change command. The general semantic model employs its associated anal-

yser through a Strategy Method [44] when updating itself. Various inter-

face methods of the analyser will be called, such as addParseTree() and

lookupType().

Designers of new semantic analysers can rely on the Caise framework to

call the prescribed analyser methods in the correct order as required, which

reduces the complexity usually associated with constructing a semantic model

of software from evolving source files. All duties associated with incremen-

tally updating the semantic model, such as removing previous semantic model

declarations and cross referencing new declarations, are performed by the se-

mantic model itself. The main task of Caise-compliant analysers is just to

insert new declarations into the semantic model. A related duty for analysers

is to override the methods for looking up types where the language-specific

scope rules differ from the assumptions made in the general semantic model

of software.

It is not difficult to map different types of programming languages into

Caise’s general semantic model of software. For example, the C# language

could be supported within Caise by creating a new semantic analyser as a

Caise plug-in. Such an analyser would map C# parse trees into the existing

semantic model of software, presumably with minor modifications, if any, to

the general semantic model’s current structure. The role of multiple language

support within the Caise framework is discussed further in Section A.2.

A secondary task of Caise-based analysers is to convert segments of the

semantic model back into parse trees for distribution to Caise-based tools.

This situation arises when the semantic model is directly edited by tools

such as class diagrammers. The Caise framework responds to this request

by asking the appropriate Caise analyser to modify a copy of the relevant

source file’s parse tree, reflecting the modification request. Once this parse

111

www.manaraa.com

tree has been updated, it is incorporated back into the semantic model in

the same manner as genuinely updated parse trees are incorporated from

modified source files.

A full discussion of semantic analysis of OO languages is beyond the scope

of this thesis, but is presented elsewhere [58]. For the purposes of the Caise

framework, a Caise-compliant semantic analyser must have the ability to

construct a semantic model given a set of parse trees, and conform to the

Caise AnalyserPlugin interface, as presented in Appendix D.

A Multiple-Layer Architecture

The Caise framework can be accurately described in terms of three-layers,

as presented in Figure 5.7. These layers are: collaboration within each type

of tool, collaboration between each type of tool, and core SE functions. The

three layers can also be described as CSCW, CSE and SE.

Figure 5.7: The three conceptual layers of the Caise framework.

The Caise framework was designed as an architecture of three layers to

reduce the complexity of the Caise server. If the Caise server had com-

112

www.manaraa.com

plete responsibility for interactions between all types and instances of tools

within a project, the design and implementation of the server would be very

complicated. Additionally, Caise-based tools would also be very difficult to

design as they would not be decoupled from the functions of other types of

tools.

At the CSCW layer of the Caise framework, as presented in Figure 5.7,

syntactical events specific to each tool type are contained within the bound-

aries of that tool. In other words, this layer is responsible for keeping all

instances of each type of tool fully synchronised. For example, the per-

character events generated from modification of a source file are propagated

to all other text editors within the framework, but not to other tools directly.

Similarly, if a class within a diagramming tool is moved to a new location

within a diagram, only tools sharing that specific view of the diagram are

notified. The Caise server is aware of all such changes internally, but these

low-level, or CSCW-based events are only propagated to the relevant tools

within the project.

At the CSE layer of the Caise framework, the framework addresses events

related to semantic changes within the software project; this is a unique fea-

ture of the Caise approach. For example, if a code editor tool receives

keystrokes that eventually form a new method or class declaration, this se-

mantic event is propagated to all other types of tools. This allows class

diagrammers and other tools to take note of the semantic change and update

their own views of the project accordingly.

At the SE layer of the Caise framework, the framework maintains the

software product that the Caise-based tools are working on. By decoupling

the CSE and CSCW functions in other layers, the SE layer can focus on code

analysis, generation of executables, and incremental integration of updated

source files.

Representing Multiple Views

Round-trip engineering, where source code and diagrams are treated as equiv-

alent representations of the same underlying semantic model, is a cornerstone

feature of most modern IDEs. Supporting multiple views of software is rel-

113

www.manaraa.com

atively straight-forward for non-extensible single-user tools. Multiple view

support in Borland’s Together IDE is discussed by Garrett [46].

For extensible collaborative tools, multiple views are difficult to support.

The arbitrary introduction of additional types of artifacts and new languages

adds great complexity to existing collaborative round-trip engineering facil-

ities. A low-overhead mechanism must be available to allow tools to stay

up-to-date with any new types of artifacts within the project. Network traf-

fic volumes when transferring artifact information must also remain low to

ensure tool response times are kept to an acceptable rate.

A key challenge in supporting many different artifact types within CSE

tools is finding a way of keeping all currently supported views synchronised

between multiple tools as artifacts are edited. For example, if a text editor

tool is used to declare a new method, this new method should appear in the

view of all class diagrammers, and vice-versa. There are two main ways of

achieving synchronisation between different types of tools: using an explicit

mapping mechanism from one view to all others, which arguably does not

scale well, or having in place a semantic model that is rich enough to represent

all views.

Within Caise, the general semantic model of OO software is expressive

enough to present views of artifacts as source files or diagrams; this is evident

from the tool demonstrations presented in the accompanying resources disc.

Typically, upon syntactically-correct modifications, updated parse trees and

code buffers are distributed to tools, which allows them to update their own

local views of artifacts, as illustrated in Figure 5.10. For example, if a class

diagramming tool adds a new method to an existing class, the resultant

updated source file that contains this class will be sent to all text editors for

updating of their own views.

5.3.2 The Caise Event Model

The Caise framework is relies upon simple and frequent events from partici-

pating CSE tools. Caise-based tools report to the server every action taken,

such as a cursor location change or a keystroke, and the server updates the

underlying model accordingly. This implies that the server has much fre-

114

www.manaraa.com

quent processing to do, but each task is relatively small. By working with

very fine-grained events, the Caise framework can also provide synchronous

collaboration, such as real time shared text editing and immediate analysis

of code changes.

As well as input events from tools, the Caise server generates output

events which are reported back to tools and other interested applications.

Output events include notification of recent artifact modifications, and feed-

back events such as metrics, impact reports and code neighbourhood infor-

mation.

The event model for the Caise framework is presented in Figure 5.8.

Within the Caise event model, the Caise server broadcasts events of various

types to all participating tools that are registered as event listeners. Tools

can register as listeners for all events or just specific event categories. Events

contain details of the general action, such as an artifact edited by a named

user, and the specific details, such as the affected text and file offset. Each

event generated within a Caise-based project is also recorded in the Caise

event log, which is described further in Section A.5.

Figure 5.8: The Caise event model.

Each Caise event type is briefly summarised in Table 5.1. Fully featured

tools are likely to register as listeners for all events, as can be seen in the

code listing in Section 6.2.6. Other components, such as the Change Graph

presented in Section 6.2.3, are only interested in specific event types.

The basic structure of Caise events is as follows. Each event records the

user responsible for generating the event, the users that received the event,

the type of event, the time that it was generated, a reference to any semantic

115

www.manaraa.com

Type Typical actions

Project A project is created or deleted.
Artifact An artifact is added, removed or edited.
Chat A user issues text or audio messages.
Feedback Tool-specific custom units of information exchange.
Client A client opens, closes or moves location within an artifact, or

rebuilds a project.
Change The project’s semantic model is manipulated directly or via

artifact modification.

Table 5.1: Event types within the Caise framework.

model components directly related to the event, any other event-specific data.

The full definition of the Caise event structure is given in a JavaDoc API

listing available from Appendix H.

The Caise event log is discussed further in Section 7.2, where tools to

analyse and visualise user activity are presented. The XML Data Type Def-

inition (DTD) for the Caise event log is given in Appendix C.

5.3.3 Artifact Modification

In terms of file sharing, the Caise framework is based upon the pattern

of Atomic Integration, as presented in Section 3.4.2. Each Caise-based tool

works on a shared set of artifacts that are stored on the central Caise server.

Artifacts are shared and modified in real time, implying that changes are

replicated to all tools within the system as they happen.

In Figure 5.9, the key types of modifications made to artifacts are il-

lustrated. These include changes in user locations (1), changes to the syn-

tax of the artifact (2), and semantic changes that result from syntactical

changes (3). This figure also illustrates the event-based nature of the Caise

framework—a tool generates an input event, the Caise server responds by

updating the appropriate artifacts, and finally the Caise-based tools update

their local views based on feedback from the Caise server.

When a Caise-based tool determines that a modification to an artifact

has taken place, such as a source file undergoing an edit, the tool will notify

the Caise server of the modification. This is a stipulation of the Caise tool

116

www.manaraa.com

Figure 5.9: Key types of actions within the Caise framework.

117

www.manaraa.com

protocol, as discussed in Section 6.2.4. In the case of a fully-synchronous

tool, such as a text editor, an edit will be an atomic event—typically a single

keystroke.

When a tool has determined that the file might be in a syntactically cor-

rect state, the Caise server is called upon to parse the file. Upon successful

parsing, changes are semantically analysed, and parse trees are distributed

to all participating tools that require them, allowing them to update their

own local views of the project, as presented in Figure 5.10. If the project’s

semantic model was altered as a result of the modification, this information

is also collated for distribution as feedback events for any interested tools.

If a file fails to parse, this is noted in the Caise project event log, and an

information event is broadcast for any tool that may be gathering project

activity metrics.

In most circumstances, only syntactically correct modifications are prop-

agated to other types of tools. For example, while a new property is being

typed in from a code editor, this partial and syntactically incorrect decla-

ration is not transmitted to other tools such as class diagrammers. This

approach does raise a transactional issue: if a line of code is currently be-

ing typed in by one user via a text editing tool, and a second user makes a

change to the corresponding entity within a diagramming tool at exactly the

same time, the Caise server does not currently integrate the uncommitted

changes of the text editor with the updated parse tree, resulting in a loss of

any uncommitted text editor changes.

For rare situations where social protocols do not provide adequate pro-

tection against conflicting modifications between shared artifacts, the issue

of text modification loss can be easily addressed. This is achieved by adding

a mechanism within the Caise server that simply merges any uncommitted

changes within an existing source file into the newly formed parse tree and

updated source code buffer. Alternatively, individual text editing tools can

easily implement a merging mechanism which performs the same process on

the client side.

Tool designers may also choose to ignore changes to artifacts made by

other users in order to provide a degree of isolation for the programmer, but

doing so runs the risk of having source files that are no longer synchronised

118

www.manaraa.com

Figure 5.10: Schematic view of an artifact modification within Caise.

119

www.manaraa.com

with the authoritative Caise server. It is, however, trivial to detect files

that are not synchronised, and in such cases, a file can be brought back up

to date easily via the Caise tool API which is presented in Section 6.2.2.

5.3.4 The Caise Server

To support the development of CSE tools, an underlying framework should

provide core SE functions, as well as interprocess communication facilities

and Groupware components. Within the Caise framework, these facilities

are all supported by the Caise server.

The Caise server is responsible for the storage and collaborative man-

agement of all artifacts within a Caise-based project. The Caise server

also manages the semantic model of software, project event log and user

information. Other functions of the Caise server include relaying different

types of events to appropriate listeners such as development tools, project

management tools and visualisation generators. The Caise server also de-

fines mechanisms to support extensibility, such as introducing new languages,

artifacts and types of feedback to the framework.

To support genuinely useful Caise-based CSE tools, the underlying frame-

work must be of a high quality. This implies that the Caise server must be

able to seamlessly handle multiple concurrent requests at any time, provide

undo support within a collaborative setting, have acceptable response times

even under heavy system load, and be practical to extend.

Implementation details for the Caise server are described in further de-

tail in Appendix A. Support for programming languages is presented in

Section A.2, including mechanisms for parsing (Section A.2.1). Storage of

Caise-based artifacts is discussed in Section A.3, including support for col-

laborative undo (Section A.3.2). Adding additional server functions to the

framework is presented in Section A.4. The Caise event log is presented in

Section A.5. Project administration is discussed in Section A.6. The Caise

plug-ins architecture is described in Section A.7. Interprocess communication

between the Caise server and participating tools is presented in Section A.8.

120

www.manaraa.com

Communication Protocols

To provide a reliable means of distributed communications and synchronisa-

tion between participating Caise-based applications, a central communica-

tions server is employed. This communications server is housed as part of the

overall Caise server. Many options are available to provide distributed com-

munication, group management facilities and floor control policies, including

toolkits such as the Java Shared Data Toolkit (JSDT) [18] and GroupKit [95].

I decided, however, to support communication through the caise.messaging

framework, as presented in Appendix A.8. This custom framework provides

a fast and low-overhead communications facility, essential in the construction

of a practical CSE framework.

Floor Control Policies

Within the current version of Caise, the server supports an unrestricted

floor control policy, where social protocols and user awareness support are

relied upon to prevent conflicting actions between participating Caise-based

tools. It is possible, therefore, with the current transaction control scheme

to have situations where one user’s change can be immediately negated by

a subsequent or competing request of another user. Awareness mechanisms

are in place, however, to highlight fine-grained concurrent work such as this,

which normally provides adequate protection to avoid such situations. In

Section 7.3, an evaluation is presented where Caise-based CSE tools pro-

vide feedback related to conflicting changes during fine-grained concurrent

development.

Tool Synchronisation

With conventional systems that provide concurrent access to shared resources,

such as database management systems, a transaction control system is in

place to detect conflicts between batches of modification requests. Such sys-

tems also provide mechanisms for rolling back conflicting modifications, al-

lowing the system to reach a globally-stable state.

The Caise approach is significantly different from conventional collab-

orative systems. A key purpose of the Caise approach is to investigate

121

www.manaraa.com

how far the real time, atomic sharing of artifacts can be applied to CSE

using custom tool support, awareness mechanisms and social protocols. As

described in Section 5.3.3, each artifact modification request consists of a

fine-grained, atomic action which is propagated immediately to all partici-

pating tools within a Caise-based project. Given that all events are atomic

and are serialised, and are processed and propagated by the Caise server,

formal transaction control is not needed.

Within the Caise framework, the propagation of atomic events is neces-

sary. Atomic events are defined as the smallest single units of actions that

modify the state of the project semantic model or associated artifacts. Ex-

amples of atomic events include keystrokes within editors or user location

changes from one position to another in any Caise-based tool.

The Caise server provides a single incoming event queue that all instances

of Caise-based tools add to by way of the Caise tool API, presented in Sec-

tion 6.2.2. By employing a single project-wide event queue, a serialisation of

events is possible. This ensures that the order of processing is kept consistent

as the event makes it way through the remainder of the Caise event lifecycle,

as presented in Figure 5.8. As explained in Section 5.3.2, Caise-based tools

make no assumptions as to when their events will be processed in relation

to competing events from other tools. They can only assume that the order

of their own events will remain consistent during processing by the Caise

server.

Given that all Caise-based tools adhere to the Caise tool protocol, as

described in Section 6.2.4, there is no possibility of a loss of synchronisation

between running instances of Caise tools. The only caveat, as discussed in

Section 5.3.3, is that text editors may be exposed to a loss of any uncommit-

ted changes if parse tree based tools are modifying the same artifact at the

same time, but this can be easily remedied in a future version of the Caise

framework. Deadlocks are also not possible within the Caise framework as

each operation on the project’s semantic model and associated artifacts are

independent from all other pending modification requests.

Sending modification requests to the Caise server infrequently and pe-

riodically as a batch is not recommended within the Caise framework, as

this violates the underlying Caise tool protocol. The Caise server can be

122

www.manaraa.com

extended to support this by employing conventional transaction control fa-

cilities, but this is not within the scope of the current version of Caise, and

is not well-aligned with the principle of real time CSE.

A Centralised Server

The Caise framework is based upon a centralised server architecture. This

design choice was made from necessity; at the commencement of this re-

search project, desktop hardware was not powerful enough to perform pro-

cessing of tool update events, parsing, semantic analysis, and updating of the

project’s semantic model. Additionally, a decentralised architecture would

have also been prohibitively expensive to develop within the scope of the

research project.

Today, high-end desktop hardware is capable of running the Caise server

process. Therefore, it is possible to support a distributed version of the

Caise architecture if required, which would be well suited to open-source

projects and multi-national development teams as they become increasingly

distributed in nature. The most significant change to the current architecture

would be adopting a distributed concurrency control algorithm to maintain

synchronisation between tools, to replace the central queuing mechanism

currently used within the Caise server.

Implementation Considerations

There were many technical issues to address when constructing the Caise

server such as supporting multiple views of software, providing a means for

reliable distributed communication, facilitating real time synchronous editing

of artifacts, and providing plug-in support for extensibility. Even compiling

some of the parser-generator based source files was challenging due to con-

straints of standard Java compilers, and numerous workarounds were required

to allow such volumes of data to be stored within the Caise server.

Design and implementation difficulties such as those listed above are real

to CSE tool and framework developers, yet these difficulties are not normally

documented within CSE literature.

123

www.manaraa.com

5.3.5 Collaborative Tool Support

CSE tools require considerable support, as discussed in Section 4.2.1. Here

a summary is presented of the many ways in which the Caise framework

supports CSE tools.

Caise-based CSE tools can implement all the modes of development iden-

tified in Section 3.4.2, such as Follow-the-Leader and Action/Reaction. Real

time sharing and modification of source files, termed atomic integration, is

also possible. The Caise framework provides at zero cost to its tools seman-

tic modelling, code neighbourhood calculation, change impact reports and

user proximity feedback.

In terms of practicality, late join-ins for Caise-based tools are supported

by the design of the Caise tool protocol. Additionally, to be discussed in

Section 8.1.3, mechanisms to avoid development activity ‘jitter’ from other

developers during the compilation phase are provided, and Caise-based tools

can also be used with existing code repository systems if required.

In terms of the considerations for tool design discussed in Section 4.2.1,

the following points are noted for Caise’s support of CSE tools:

Tool A number of CSE tools can be constructed within Caise. There are

no known technical or theoretical limitations for tool support—Caise

supports synchronous editing, multiple languages and artifacts, and

framework extensibility

Task Most SE tasks can be accommodated within the Caise framework

without any modification or system extension. Task-specific duties

are typically facilitated by individual tools, but the Caise server is

powerful enough to accommodate high system loads, most types of

artifacts, and calculation of semantic model-derived information

People The Caise framework is suitably generic and unbounded to accom-

modate any number of collaborating developers and concurrently con-

nected tools. People can be distributed throughout a global network,

and be located across different time zones. The Caise framework can

also be extended to accommodate specific developer roles if not already

supported by Caise-based CSE tools

124

www.manaraa.com

5.3.6 Framework Extensibility

Extensibility, identified as an important requirement in Section 4.2.1, is a

core to the Caise framework. Extensibility is provided as follows:

• New tools can be introduced into the framework by adhering to the

Caise tool protocol, allowing them to read and modify shared arti-

facts, as discussed in Section 5.2. Many facilities are available for new

tools such as collaborative widgets and rich information sources such

as semantic models and full event logs

• Existing SE tools can also be integrated into the framework, depending

on the degree of extensibility such tools provided. An example of an

IDE that has been integrated with the Caise framework is provided in

Section 6.3.3

• New languages can be supported by adding a new parser and semantic

analyser, as discussed in Section A.2. If the current semantic model is

not suitable for accommodating constructs within the new language,

the semantic model can be extended or replaced within each project

• New types of artifacts can also be incorporated into the Caise frame-

work, as presented in Section A.3. The more detailed the grammar

of the artifact, the more detailed the project information will be after

semantic analysis

• If a new type of feedback event for Caise-tools is required within the

software project, again, this can be easily supported through feedback

plug-ins, as described later in this section

• If other kinds of functionality are required such as batch processing of

the semantic model, a server application can be incorporated within

the Caise framework, as discussed in Section A.4

• New types of collaborative widgets can be added to the framework for

use within CSE tools. This concept is discussed in Section 6.3.4

125

www.manaraa.com

5.4 Related Work

Several research projects have similarities with the Caise framework’s ap-

proach to supporting CSE. The FIELD environment defined a message pass-

ing interface between numerous types of common SE tool, and also supported

a cross-referencing database, typically populated by scanning source files for

symbols such as method and variable names. The PCTE project also de-

fined several detailed interfaces for tool to tool communication, backed by

fine-grained relational database schemas as the canonical source of project

information. Similarly, the SPADE-1 [6] environment approaches CSE from

a process-centric viewpoint, where a range of tools interact over a commu-

nication interface, controlled by a process engine, accessing data from an

underlying artifact repository.

The Caise framework differs from previous research approaches in two

key areas. Firstly, the Caise framework is collaboration centric—it supports

fine-grained real time collaboration natively, as opposed to other frameworks

that support collaboration secondarily as a by-product of their design. Sec-

ondly, the Caise framework encompasses a very detailed semantic model of

software as the authoritative source of project information. Other research

approaches at the very most support only basic semantic analysis of software

artifacts; the Caise framework is the only integrated environment that has

deep semantic modelling of software at the core of the architecture.

Summary

The Caise framework is more than just another tool to provide some degree

of collaboration within SE. Caise provides a new approach to the support

of CSE by way of semantic modelling, accommodating new languages and

tools, supporting scalability, and allowing customisation and extensibility.

The Caise semantic model, event log and artifacts are rich sources of infor-

mation for SE analysis, and the framework provides a real time, event-based

environment for management of collaborative software projects.

In this chapter, an overview of the architectural design of Caise has been

presented, including the key framework characteristics and design principles.

126

www.manaraa.com

A description of how the Caise server operates in terms of language support,

artifact sharing, and server extensibility has also been provided.

In Chapter 6, the construction of Caise-based tools within the Caise

framework is presented, and several example Caise-based CSE tools are

demonstrated. The design and implementation considerations over a range

of Caise-based tools are also discussed.

127

www.manaraa.com

Chapter VI

Using the Caise Framework

In this chapter several CSE tools are presented. These tools have been

constructed using the Caise framework presented in Chapter 5, have been

built to support the patterns of collaboration identified in Chapter 3, and

incorporate the design characteristics discussed in Chapter 4.

An overview of Caise-based CSE tools is given in Section 6.1. In Sec-

tion 6.2, the construction of Caise-based tools is illustrated and described.

In Section 6.3, a number of example CSE tools are presented.

6.1 Overview of Current Caise-Based Tools

Since their conception, the CSE tools presented in this thesis have been

constantly refined in order to provide realistic SE environments. Common

to these tools are the following features:

• Round-trip engineering between all tools and artifact views

• Multi-user artifact sharing and editing capabilities with relaxed WYSI-

WIS views, including collaborative undo

• Instant messaging and an audio chat channel

• Build and run facilities, including protection from remote development

jitter when attempting to compile during times of high development

activity

• Event-based collaborative feedback information, such as proximity re-

ports relating to other user locations within the project, and semantic

model change impact reports as the project evolves

128

www.manaraa.com

Attention has been given to ensuring that awareness information is pre-

sented effectively within each tool. Accordingly, all relevant aspects of each

tool’s user interface have been designed to accommodate and illuminate con-

stantly changing states.

The majority of the features built in to the Caise-based tools presented

here are provided by components made available from the Caise client wid-

gets library, as presented in Section 6.2.3. The remaining collaborative fea-

tures have been implemented manually, but rely on the services of the Caise

tool API presented in Section 6.2.2 to implement functions such as tool syn-

chronisation and the shared modification of artifacts.

Users of such tools are likely to employ the majority of the common tool

features listed above, such as shared concurrent editing of artifacts, build and

run facilities, and chat services. In some development groups, it is conceivable

that only one user at a time will make modifications to the project. In

other situations, the tools might only be used for shared navigation and code

reviews.

The Caise-based tools presented in this chapter appear as single user

tools when only one developer is active within the current project. When

additional developers join the project, the awareness mechanisms such as

telecursors and project explorer panes activate, providing context-sensitive

feedback on the locations of others. Developers may choose to ignore or

deactivate such awareness mechanisms, but by default the Caise-based tools

operate in a manner similar to other CSCW applications, where the presence

of others is a key aspect of each tool’s user interface.

Apart from the standard CSCW facilities, the key differences between

conventional tools and the Caise-based CSE tools presented in this chapter

are that artifact modifications are propagated immediately to all participat-

ing tools within the project, and that information is presented immediately

to specific users as the server detects relationships between users and units

of code.

Users can rely on the Caise server to ensure that all changes are recorded

and updated against the authoritative set of artifacts and underlying project’s

semantic model. As the entire project is shared in real time, users will oc-

casionally experience concurrent modifications to a common region of code,

129

www.manaraa.com

but from anecdotal and empirical evaluations presented in Chapter 7, consid-

erable productivity gains over conventional tools are possible within typical

development scenarios, without significant user hindrance.

While not studied as part of the research within this thesis, is it also con-

ceivable that gains in software quality may occur, due to the raised awareness

of the actions and intentions of others within the project.

6.2 Caise-Based Tool Construction

This section details the technical design and implementation of the Caise-

based tools, for the purposes of further custom development and reuse of

existing components. The operation of Caise-based tools within the Caise

framework is also explained. Working examples of such tools are presented

in Section 6.3.

6.2.1 Tool Construction Overview

Caise-based tools engage the services of the Caise server by way of the

Caise API, presented in Section 6.2.2. Services include the downloading of

artifacts, the parsing of updated artifacts, and the querying of the semantic

model for information such as related users or units of code.

To edit shared artifacts, Caise-based tools must adhere to the Caise

tool protocol, presented in Section 6.2.4. This ensures that each tool stays

synchronised with the Caise server and all other participating tools, and that

conflicting batches of artifact modification requests are not encountered. The

distributed MVC design of the Caise framework provides a deadlock-free

synchronous replicated view of all artifacts within the project.

In addition to using the Caise server for the management of shared ar-

tifacts, Caise-based tools may also use Caise collaborative widgets, as pre-

sented in Section 6.2.3. Such widgets range from simple, such as text chat

panes, to complex, such as multi-user text editor components.

Tools may choose to respond to feedback events from the Caise server

such as code dependencies being resolved. The current types of feedback

events supported within the Caise framework were presented in Section 5.3.2.

130

www.manaraa.com

Tools may also require specialised feedback events, which are provided by

custom feedback plug-ins, to be discussed in Section 6.2.5.

Typical tools within the Caise framework include source code editors and

UML diagrammers. Various examples of Caise-based tools are presented

in Section 6.3. Key code examples taken from these tools are provided in

Section 6.2.6, and these code segments can be expanded or customised for

the purpose of additional CSE tool construction.

Caise-based tools by default do not have significant resource require-

ments. The amount of memory and network throughput consumed by typ-

ical Caise-based tools is presented in Section 7.4. The only requirements

for Caise-based tools are that the Caise server is operational on a known

machine within the network, the Caise tool protocol is adhered to, and the

Caise tool API is available during compilation and tool operation.

No control over the interleaving of events is provided by the Caise frame-

work. It is intended that fully synchronous views of artifacts, awareness

mechanisms, feedback messages and social protocols will be adequate for

coordinating the actions of developers within the project. If stronger floor

control policies are required such as token passing, or locking is needed such

as one person taking ownership of a specific region of code, this must be

added to the Caise framework or incorporated within individual tools.

6.2.2 Tool Services

The Caise framework provides services which support the rapid development

of CSE tools. By utilising the Caise framework, CSE tools rely on the Caise

server to manage the storage and sharing of artifacts, and to control users

as they join and leave projects and artifacts. Caise also provides low-level

mechanisms to allow distributed messaging between tools and the Caise

server, and supports a distributed event model.

A semantic model of the software for each project is maintained by the

server, which is refined upon the actions of participating Caise tools. Caise-

based tools are not required to perform any parsing or semantic analysis

themselves; the server is responsible for translating modifications in artifacts

to an updated semantic model. The semantic model is accessed by Caise-

131

www.manaraa.com

based tools for reading and also direct modification through the Caise tool

API.

The functions provided by the Caise server, both in terms of support-

ing collaborative work and performing core SE tasks, allow the CSE tool

developer to focus on the specific requirements of the given tool rather than

re-implementing functionality common to most CSE tools. If, however, the

tool being developed requires additional features, the Caise framework is

easily extended to accommodate new artifact types and kinds of feedback.

In Section A.3.3, the concept of framework extension is discussed further.

The Caise Tool API

The Caise tool API is provided as the means of accessing the functions of

the Caise server from within a CSE application. While the Caise server

typically resides on a separate machine, the Caise tool API allows the calling

application to view the server as if it was contained within the same process;

the server functions appear no different to those of any other library. The

server is accessed by a set of standard method calls, data is marshalled as

method return values, and catchable events are thrown whenever interesting

actions occur during the development of a Caise project.

Table 6.1 presents the key Caise tool API methods, providing a useful

overview of the programming interface. A user manual for the Caise frame-

work, including a listing of the Caise tool API, is available from Appendix H.

The majority of the methods listed in Table 6.1 are demonstrated as coding

examples in Section 6.2.6.

The Caise tool API provides adequate functionality to implement a num-

ber of different CSE tools. Multi-user text editors, for example, can rely on

the Caise tool API to provide collaborative code editing widgets, semantic

analysis of code modifications, and user presence feedback. To implement

communication facilities, messaging can be provided via the Chat methods.

Tool design and implementation will always be the responsibility of the CSE

researcher, but the Caise tool API prevents ‘reinventing the wheel’ for the

essential yet complex CSE services.

132

www.manaraa.com

Method Description

Connect to Engine Makes a new connection to the given Caise server
Open Project Opens an existing Caise project
Add Artifact Adds a new artifact to the given project
Open Artifact Sets an existing artifact as open for a given user
Set User Location Moves a user’s cursor location within an artifact
Update Source Code Appends a sequence of characters to an artifact
Update Parse Tree Appends a parse tree of an artifact
Update Model Directly manipulates the semantic model of a project
Get Model Snapshot Returns a copy of a project’s semantic model
Fire Tool Event Allows a tool to invoke tool-specific server plug-ins
Get Event Log Returns the complete event log for a given project
Send Chat Message Allows users to send text messages between tools

Table 6.1: Key methods of the Caise tool API.

6.2.3 Caise Tool Widgets

Before discussing the construction of individual Caise-based tools, the col-

laborative widgets available for use within any CSE tool are presented. This

set of widgets has been produced as part of the first iteration of the Caise

framework’s development; it is anticipated that the user community will con-

tribute additional widgets.

Caise tool widgets can be added to Swing/AWT-based Java applica-

tions without any additional coding requirements, which allow tools to be

augmented with CSE capabilities for minimal effort. These widgets oper-

ate internally by communicating with the Caise server and responding to

real time events. A code listing of the GUI for a Caise-based CSE tool is

presented in Section 6.2.6.

Applications that use such components do not require any specific SE

knowledge or capabilities. For example, a stand-alone text editor can be

enhanced by incorporating the Caise collaborative User Tree into its user

interface. The User Tree will display the method, class and package that the

editor is currently modifying, without the editor requiring any specific SE

capabilities.

Caise tool widgets operate by consuming Caise-based events. As illus-

trated in Figure 5.4, the Caise server generates events based on actions of

133

www.manaraa.com

participating tools. Various types of these events are captured by Caise tool

widgets, allowing the graphical state of widgets to be updated in real time.

There are three main types of widgets available to Caise-based CSE

tools: awareness, chat and editor widgets. Each of which will be discussed

now.

Awareness Widgets

The User Tree is shown in Figure 6.1, which may be used within a CSE tool to

support user awareness. This widget provides a user-centered view of Caise-

based SE projects in real time. Individual tools require no SE knowledge of

the artifacts they are editing; in line with the Caise tool protocol they simply

have to keep the Caise server informed of the name of the artifact currently

being edited and the most recent cursor location of the user controlling the

tool. The User Tree will keep itself updated with the latest view. The

implementation of the User Tree is discussed further in Section 6.3.4.

Figure 6.1: The Caise User Tree widget, supporting a user-centric project
view.

The Change Graph is another widget that can be readily added to any

CSE tool. This widget is illustrated in Figure 6.2. The Change Graph

widget keeps track of the cumulative additions and deletions to and from the

semantic model on a per-user basis. This provides each user with an overview

of the current development activity. Again, this component can be added to

any CSE application, or housed in a dashboard display or separate frame.

The Client Panel is key component of the Caise widgets package, and can

be seen within the Caise-based tools presented in Figures 6.20 and 3.1. The

134

www.manaraa.com

Figure 6.2: The Caise Change Graph project management widget.

Client Panel typically houses four components known as the Artifacts, Users,

Feedback and Build Panes, although the Client Panel can be configured to

house any combination of specific panes. Individual panes can also be added

to an application separately.

The Artifacts Pane, as presented at the bottom of Figure 6.20, provides

file information on the artifacts within a Caise project, including their cur-

rent compilation state. The Users Pane is presented in Figure 6.3. This pane

allows messages to be sent between users, including audio broadcasts.

Figure 6.3: The Caise Users Pane, providing voice and text communication.

The Build Pane is presented in Figure 6.4. It provides an adjustable level

of collaborative awareness, allowing the user to temporarily ignore concur-

rent edits for the purpose of building the system without interruption. In

addition to allowing the project to be built from the live, last parseable or

last buildable version, the Build Pane allows the current project to be exe-

cuted for testing purposes. The capabilities of the Build Pane are discussed

further in Section 8.1.3.

135

www.manaraa.com

Figure 6.4: The Caise Build Pane with adjustable levels of collaborative
awareness.

Finally, the Feedback Pane, which was presented previously in Figure 1.2,

displays plain-text information derived from semantic analysis, such as user

proximity feedback between developers and impact reports that result from

artifact modifications.

Chat Widgets

For developers who are co-located, communication will include face-to-face

communication. For distributed developers, communication is likely to be

based upon voice calling and email. The Caise framework also assists

person-to-person communication by way of text and audio chat.

Chat messages are broadcasted to all intended recipients in the same

manner as all other Caise events. Within the Caise widgets package, the

User Pane can be used as a widget to send and receive chat text messages,

as demonstrated in Figure 6.3. If a custom GUI is required, then the Caise

API is used to send and receive messages in any manner desired.

For audio-based chat, the Talk Button widget is presented in Figure 6.5.

This widget can be built into any Java application, including all Caise-

based tools. When the Talk Button is pressed, recording from the user’s

microphone commences. Upon release of the Talk Button, the message is

serialised, sent and played to all other tools within the Caise project that

also contain a Talk Button.

The chat API is discussed further in the caise.messaging technical re-

port, contained in the accompanying resources disc.

136

www.manaraa.com

Figure 6.5: The Talk Button Caise collaborative widget.

Editor Widgets

Currently only one widget to support general editing of artifacts is present

within the Caise collaborative widgets package. This widget, known as

the Collaborative Text Pane, enables fully synchronous editing of text files

through the support of the underlying Caise framework.

The Collaborative Text Pane is presented in Figure 6.6, and is shown in

use in Figure 6.20. This widget can be inserted into any Java application,

providing fully synchronous text editing for any number of users, collabora-

tive undo facilities, telecursors and remote modification highlighting.

Figure 6.6: The Caise Collaborative Text Pane with remote highlighting and
telecursors.

As explained in Section A.3, the text contained in this widget is guar-

anteed to remain in a consistent state between all users, regardless of any

sequence of modifications. The text pane sources its information for tele-

cursor positions and remote text highlighting from the underlying Caise

document buffer.

137

www.manaraa.com

Other Widgets

Other types of collaborative widgets can be easily envisaged within the Caise

framework, including project management and awareness widgets, and per-

haps sound-based awareness of remote user actions. As this is not the core

focus of the research of this thesis, the search for new awareness mechanisms

is currently left for other research projects such as Maui [55] to explore.

The implementation of new types of Caise tool widgets is discussed in

Section 6.3.4.

6.2.4 The Caise Tool Protocol

By following the Caise tool protocol, which specifies the contract between

individual tools and the server, tools are assured of staying synchronised with

each other, and the Caise server is able to avoid concurrency issues such as

deadlocks and forced roll-backs of tool requests. The Caise tool protocol

must be followed by all Caise-based tools, otherwise indeterministic and

incorrect behaviour may result.

Individual CSE tools have the ability to implement locks and other floor

control policies that allow only one user at a time to edit a given region of

code. By default, however, the Caise framework allows fully synchronous

editing of any artifact. To ensure that tools are always synchronised, a

specialised Model-View-Controller [44] approach, by way of the Caise tool

protocol, is used which guarantees consistency over distributed parallel edits.

Requests to edit the view are captured by tools, but the view is not imme-

diately updated. Rather, the edit is sent to the server which in turn edits

the global semantic model, and broadcasts the resultant change to all tools.

Each tool then updates its local view, including the tool that made the edit

request.

The Caise tool protocol is formally specified in this section, but I do not

intend publishing it as a standard of any kind. It is simply an implementation

of a distributed version of the model-view-controller pattern, specialised for

synchronous modification of shared artifacts. Within Caise, this protocol

must be followed, and developers of similar collaborative frameworks may

also find the protocol suitable for adoption.

138

www.manaraa.com

To implement a CSE tool that adheres to the Caise tool protocol, three

application-level threads are typically used: a GUI thread, a worker thread

and a Caise event listener thread. The threading model for Caise-based

tools is presented in Figure 6.7. Most windowing toolkit libraries provide a

GUI thread, and the Caise tool API provides a Caise event listener thread.

As the worker thread is normally just the main application thread of the

Caise-based tool, it is unlikely that any new threads need to be created

explicitly within a Caise-based tool. With the existence of a worker thread,

the GUI thread is free to take any volume of user input from the user inter-

face, without causing jitter or lag as events and API commands are sent to

and from the Caise server.

Figure 6.7: The recommended threading model within a Caise-based tool.

By using a Model-View-Controller approach and following the Caise tool

protocol, CSE tools are guaranteed to stay up-to-date and synchronised with

the Caise server, and there is no risk of deadlocks or loss of information.

The following list presents the six stipulations of the Caise tool proto-

col. This protocol describes the sequence of events presented in Figure 5.10,

and a specific example of implementing the Caise tool protocol is given in

Section 6.2.6.

1. The CSE tool captures all user input events such as keystrokes and

caret move events, typically using action listeners. All actions are to

be consumed, blocking the underlying view of the artifact from being

modified

2. All captured events are placed into a FIFO event queue within the CSE

139

www.manaraa.com

tool. The GUI thread returns immediately after placing the event in

the queue, preventing any latency within the user interface

3. A separate CSE tool worker thread dequeues events in order and issues

them to the server as corresponding Caise tool API method invoca-

tions

4. The CSE tool worker thread waits for the return value of the Caise

tool API method invocation before processing the next tool input event.

The CSE tool does nothing upon a successful method invocation, and

escalates any errors if the method invocation fails

5. The CSE tool’s Caise event listener thread listens for broadcasted

server events that result from Caise tool API method invocations.

Upon relevant events such as artifact modifications and user location

changes, the tool’s copy of the artifact is updated accordingly. This

step is performed by all participating tools, not just the instance that

invoked the event

6. Upon any semantic model update, the CSE tool’s artifact view is re-

drawn by the GUI thread

During spikes of development by multiple Caise tools, the server ensures

fairness by queuing events evenly based on the number of contending tools,

rather than absolute order of event arrival, as explained in Section A.8. In

this manner, the situation where all other tools are unfairly delayed by an

exceptionally active single user is avoided, at the cost of slightly unintuitive

behaviour.

6.2.5 Building a New Caise-Based Tool

When designing a new tool for use within the Caise framework, four stipu-

lations apply:

1. The artifacts that are displayed by the tool must be capable of being

expressed in terms of the project’s semantic model, if they are to be

140

www.manaraa.com

shared by all other types of tools. If not, the semantic model must be

expanded for additional types of artifacts to be shared

2. If additional tool-specific information is required to be maintained, such

as layout coordinates, an auxiliary artifact will be required. This is

managed by a corresponding tool manager plug-in

3. The events generated by the Caise framework must be sufficient to

keep the tool synchronised with the Caise server. If not, a new feed-

back plug-in will be required to provide such information

4. It is imperative that the tool follows the Caise tool protocol, as de-

scribed in Section 6.2.4

The remainder of this section discusses these four stipulations in further

detail.

Bounds of the Semantic Model

All entities contained within a tool’s artifacts must be able to be derived from

the project’s semantic model. For example, a class diagrammer can obtain

all the information it requires from the semantic model, including packages,

classes contained within packages, method names, scope information, and

relationships such as inheritance and association. For a new type of tool,

such as a use case diagrammer, the actor entity is beyond the scope of the

current semantic model.

In the case where a semantic model does not incorporate specific entities

for a new type of tool, two options are possible:

1. Extend the semantic model to accommodate the new entities

2. Do not model these entities as shared components throughout the

framework

If option one is employed, other components within the Caise framework

such as feedback plug-ins and semantic analysers will require updating to

141

www.manaraa.com

incorporate the new entities within the semantic model. This also allows

existing tools to integrate shared views of the new entities.

If option two is employed, the entities can still be shared by using an aux-

iliary artifact, as described below. This simplistic approach, however, means

that the server will have no knowledge about the entities. It also follows that

feedback information related to these entities will not be generated.

Forming Auxiliary Artifacts

If a new type of tool is introduced into the current set of CSE tools, it is

likely to introduce a new type of artifact as well. Code editors can simply

display the contents of the standard Caise-based artifacts, but most tools

will require additional caches of information beyond what is stored in the

project semantic model. Class and sequence diagramming tools, for example,

require layout information to display their respective diagrams.

When implementing new tools, additional file information is stored in

auxiliary artifacts. A sequence diagrammer, for example, stores details of

each sequence diagram within the project such as the sequences displayed

and the methods involved. Typically, each type of tool will keep its tool-

specific information private, where only instances of that tool respond to

auxiliary artifact modification events of that tool type. This concept of

isolating tool-specific events from other types of tools has been illustrated

previously in Figure 5.7. An example of accessing and modifying auxiliary

artifacts is presented in Section 6.2.6.

To be discussed further in Section A.3.3, a tool manager plug-in is re-

quired for each new type of tool that has specific artifact requirements. A

tool manager plug-in for a sequence diagrammer, for example, creates or

loads an artifact specific to sequence diagrams on startup, listens to layout

modifications requests from instances of sequence diagrammer tools, updates

the shared sequence diagramming artifact upon modification requests, and

generates artifact change information for broadcast back to all participating

sequence diagramming tools. Typically, layout information is held in a stan-

dard map collection, and change events are described by updated pairs of keys

and values. An example tool manager plug-in is presented in Section 6.2.6.

142

www.manaraa.com

If required, tool managers may allow tools of other types to access and

even modify tool-specific auxiliary artifacts. It is difficult to envisage a situ-

ation where one tool type requires access to private information of another

tool. As an example, however, a JavaDoc generation tool might produce a

class listing based on the layout positions within a class diagram. To provide

artifact access of another tool type, no special requirements are necessary—

any tool can access and modify an auxiliary artifact as long as it knows the

auxiliary artifact identifier and the tool manager identifier. Tool manager

plug-ins can also be implemented with security features to control access to

artifacts if required.

Providing Additional Feedback Information

Over and above the standard types of feedback delivered to Caise tools, as

described in Section 5.3.2, tool developers may require custom, tool-specific

information to be broadcasted throughout the Caise framework. An exam-

ple might a project management tool that requires being informed whenever

two users are located within units of code linked by a superclass/subclass

relationship. Upon receipt of such feedback information, the project man-

agement tool could inspect the areas of code in detail and issue precautionary

warnings if the units of code are deemed to have a high level of overlap.

To facilitate customised feedback, a Caise-compliant feedback plug-in

is created and loaded into the Caise server. Feedback plug-ins are notified

every time that a Caise tool generates an input event such as a user changing

location, and at this point, the feedback plug-in can inspect the project’s

semantic model and artifacts. If the feedback plug-in determines that a tool-

specific feedback event should be broadcasted, it returns such an event to

the Caise server, which will distribute it accordingly.

All Caise-compliant feedback plug-ins must conform to the Caise Feed-

backPlugin interface, as presented in Appendix D. Output from the Caise

DOI user presence plug-in is presented in Figure 1.2. This feedback plug-in

is discussed in detail in Section 6.2.6, which includes a source code listing.

Caise-based feedback plug-ins decouple the task of gathering SE infor-

mation from Caise-based tools. For a code editor that is to remain simple

143

www.manaraa.com

and independent of specific SE methodologies, it is preferable to implement

feedback by way of Caise-based feedback plug-ins. In other cases, smarter

kinds of tools may derive information locally, such as metrics for currently

opened source files.

Responding to Local Modification Requests

A demonstration of how tools respond to modification requests by local users,

as per the Caise tool protocol, is given in Section 6.2.6. For the construction

of new tools, a discussion is given here.

For a sequence diagrammer, typical modification requests from the user

include the creation of a new sequence diagram, adding a new class or method

to a diagram, or adding or removing a sequence from a diagram. For a use

case diagrammer, typical modification requests include adding a new actor,

or adding a new class or method. Deletion or renaming of entities is also

possible.

The majority of these requests can be facilitated through the Caise tool

API. For tool-specific requests, such as changing the layout of a diagram, or

modifying a component contained within a tool-specific artifact rather than

the semantic model, then a tool manager request is issued to update the

tool-specific artifact.

Tool Initialisation

The design of the start-up routine for new tools is typically as follows:

1. When the tool starts up, it establishes a connection to the Caise server,

as demonstrated later in this section

2. Upon server connection, it will download a copy of the project’s seman-

tic model (if required), core artifacts, and any tool-specific auxiliary

artifacts

3. It will then display its tool-specific views, based on the downloaded

project information

144

www.manaraa.com

4. Listeners for Caise-based events are activated, allowing the local copy

of the semantic model and artifacts to be updated as required

5. Listeners are also activated for changes made from the local tool user,

which are captured and directed to the Caise server

In the next section, code examples for all the above operations are given.

6.2.6 Coding Examples

The code segments presented in this section are taken from the Java code

editor and UML diagrammer, which are discussed in Section 6.3. These code

examples represent the full set of actions necessary to complete the cycle

of events presented in Figure 5.10, and can be used as a starting point for

additional CSE tool development.

Connecting to the Caise Server

Each instance of a Caise-based CSE tool needs to establish a connection

to the Caise server. The most appropriate time to do this is at program

startup. Within Caise, each user has a unique name, and this is given

during the call to establish a server connection. The code segment presented

in Figure 6.8 demonstrates connecting to a named Caise server, registering

an application for Caise events, and opening an existing project.

// create a new instance of a CAISE handler
CAISEHandler handler = new CAISEHandler(clientName,

serverName, TextEditor.ID);

// tell the server to notify this class of any events
handler.attachCAISECallback(this);

// open the initial CAISE project with no event filtering
handler.openProject(projectName, CAISEEvent.ALL EVENTS);

Figure 6.8: Initialising a Caise-based CSE tool.

145

www.manaraa.com

Adding Caise Widgets to a Tool

Caise widgets may be added as components within a user interface in the

same manner as any other standard graphics widget. The only requirement is

that events from the Caise server are passed from the containing application

to each widget. Event handling code is given later in this section.

In the code segment presented in Figure 6.9, it is apparent that adding

Caise-based collaborative widgets to a Swing/AWT Java application is no

different than constructing a conventional user interface.

// build the gui for the editor
private void initGUI() {

// create a new user tree
userTree = new UserTree();
userTree.setPreferredSize(new Dimension(150, 500));
// create a new client panel to display shared artifacts
clientPanel = new ClientPanel(handler, statusBar);
// create a new shared text editor pane
sharedEditor = new JavaTextPane(this, handler.getClient());
// add the shared editor pane to a scrollable pane
textPanel = new JScrollPane(sharedEditor);
// create a split pane
topPane = new JSplitPane(JSplitPane.HORIZONTAL SPLIT);
// put the shared text editor on the left
topPane.setLeftComponent(textPanel);
// put the user tree on the right
topPane.setRightComponent(userTree);
// create the main application pane
mainPane = new JSplitPane(JSplitPane.VERTICAL SPLIT);
// put the split pane as the top component
mainPane.setTopComponent(topPane);
// put the client panel as the bottom component
mainPane.setBottomComponent(clientPanel);

}

Figure 6.9: Adding widgets to a Caise-based tool.

146

www.manaraa.com

Downloading Server Resources

The code segment presented in Figure 6.10 demonstrates how the Java code

editor tool downloads an artifact from the Caise server for collaborative

editing. By downloading the artifact, the code editor tool is now in a position

to allow local modifications to the file by way of the Caise tool protocol.

Code editors do not typically need a copy of the project’s semantic model,

as they operate purely at the artifact level.

// open a shared file from the caise server,
// assuming that the handler exists and a project has been opened
private void openFile(String fileName) {

// set the contents of the editor pane to the current source code buffer
content.setText(handler.openFileAsSourceCode(fileName));

}

Figure 6.10: Downloading a Caise artifact.

In Figure 6.11, the startup routine for the Java UML diagrammer is pre-

sented. After connecting to the Caise server and a named project, the UML

class diagrammer downloads a copy of the complete project semantic model

and the diagrammer-specific auxiliary artifact which contains all the class

layout information. A copy of the semantic model is required for the dia-

gramming tool to extract fine-grained project information such as packages,

classes, methods and visibility details.

Catching Local Tool Actions

The Caise tool protocol stipulates that tools pass artifact modification

events to the Caise server, instead of allowing the tool’s view of an artifact

to be modified directly. To do so, tools must catch all artifact modification

actions and queue them for subsequent proxying to the server. Only once the

event has been processed by the server and a response has been broadcasted

to all tools will local views be updated, as illustrated later in this section.

In the code segment presented in Figure 6.12, the key presses destined for

the text pane within the Java editor are captured and queued. The current

147

www.manaraa.com

// do start-up downloads for class diagramming tool
private void downloadModel() throws Exception {

// get the latest version of the model from the server
model = handler.getModel(projectName);

// download the auxilary artifact (map of class diagram positions)
viewMap = (Map) handler.openAuxilaryArtifact

(JavaClassDiagrammerToolManager.ARTIFACT NAME,
JavaClassDiagrammerToolManager.PLUGIN ID);

}

Figure 6.11: Downloading the semantic model and an auxiliary artifact.

cursor location is not recorded within the keystroke event—the server main-

tains the authoritative record of current user positions to ensure consistency

between all the tools, and already knows the user location at the time of

the pending key press. To maintain the record of user locations, cursor lo-

cation changes are another type of Caise event governed by the Caise tool

protocol.

Sending Tool Actions to the Server

As described in Section 6.2.4, the GUI thread is only responsible for capturing

and enqueuing user input, and updating the local view of artifacts. The

role of each Caise-based tool’s worker thread is to take events from the

local event queue and deliver them to the server as API method calls. As

illustrated in the code segment of Figure 6.13, the worker thread blocks until

a corresponding event has been broadcast by the server before processing any

remaining queued events.

The code segment presented in Figure 6.14 illustrates the routine for the

Java UML diagrammer where the layout of the diagram is locally modified.

The tool responds to local modification requests by updating the class dia-

gram stored as an auxiliary artifact on the Caise server.

148

www.manaraa.com

public void keyTyped(KeyEvent e) {

// kill it before it gets to the editor
e.consume();

// ignore any keystrokes that involve alt or ctrl
if ((e.getModifiers() & (e.ALT MASK|e.CTRL MASK)))

return;

// ignore escape key
if (e.getKeyChar() == (char)27)

return;

// add regular key event to client queue
enqueEvent(new EventWrapper(e, fileName));

// update the state of the undo menu item
EditorFrame.this.undoItem.setEnabled(true);

}

Figure 6.12: Implementing a key listener within a collaborative text editor.

Listening for Server Responses

The Caise server broadcasts events to all registered listeners upon any sig-

nificant event such as an artifact modification or a change in the project’s

underlying semantic model. If a tool has issued a request to modify an ar-

tifact, the server will perform the modification on its master copy and then

broadcast a corresponding event to all tools. The tool that issued the request

will be expecting a subsequent modification event, and all other tools are also

required to adjust their local artifact views upon event notification.

The code segment presented in Figure 6.15 illustrates the main event loop

within the Java text editor, which is representative of typical Caise-based

tools. As the editor also employs the User Tree widget, events are relayed to

the widget, allowing it to update its own view of the project. The text editor

also needs to keep track of user location changes in the same manner as it

monitors artifact modification events, but for the sake of simplicity, this has

been omitted from this example.

149

www.manaraa.com

// routine to empty GUI input event queue
final class EventHandler implements Runnable {

public void run() {
while (isThreadRunning()) {

// remove event from queue and pass to server
EventWrapper ew = clientInputEvents.take();

if (ew.event instanceof KeyEvent)
// send key events as buffer append requests
handler.appendSourceCodeBuffer(ew.fileName,

ew.event);

// wait until the server has replied
serverFeedbackEvents.take();

}
}

}

Figure 6.13: Sending a local tool action event to the Caise server.

Updating the Local Artifact View

To complete the Model-View-Controller pattern within the Caise event

model, the final task for CSE tools upon receiving an event is to update

their local view. Within the text editor, this involves appending and re-

displaying the text pane upon artifact modification events, as presented in

the code listing of Figure 6.16. For user location change events, this involves

updating the local mapping of users and file positions and re-displaying all

cursors. As the Java code editor uses a multi-user text component, arti-

fact modification events only need to be relayed to the Collaborative Text

Pane—this multi-user component will perform the text insertion and remote

modification highlighting internally.

It is important to note that each tool’s view runs no possibility of losing

synchronisation with other tools or the Caise server, barring catastrophic

network failure. As long as events are captured and delivered in order to

the server, and the underlying artifact is only updated within each tool in

150

www.manaraa.com

// inform server that a component within the diagram has been moved
private void issueMoveComponentEvent(Decl component, int xPos, int yPos) {

// create new event to pass to server
CAISEEvent event = new CAISEEvent(PLUGIN EVENT, TOOL MANAGER);

// the plugin responsible for handling this event
event.setID(JavaClassDiagrammerToolManager.PLUGIN ID);
// set the source entity: the component that has moved
event.setSourceEntity(new Integer(component.getID()));
// set the event data: the new positions
event.setData(MOVE COMPONENT, xPos, yPos);
// set the sender
event.setSourceUser(handler.getClient());
// hand to server - this will make its way to the correct plugin

handler.throwToolEvent(event);
// now we just wait for the response from the event queue. . .

}

Figure 6.14: Modifying an auxiliary artifact.

response to server events, then synchronisation is guaranteed.

In Figure 6.17, the update routine for the Java UML diagrammer is pre-

sented. In this code segment, the UML diagramming tool responds to two

events: core artifact modifications and changes to the class diagram auxiliary

artifact. When a source file has been modified, the Java UML diagrammer

immediately updates its own copy of the project’s semantic model. When

the class diagram auxiliary artifact has been modified, the local copy of the

artifact is updated. Upon any artifact modification, the local view of the

Java UML diagrammer is then redisplayed.

Providing Customised Feedback Events

In Figure 6.18, the structure for a custom feedback plug-in is presented.

Feedback plug-ins, as described in Section 6.2.5, are invoked by the Caise

server whenever the state of the project changes. As can be seen in the

151

www.manaraa.com

public void update(Collection events) {

// for each event
for (Iterator i = events.iterator(); i.hasNext();) {

CAISEEvent event = (CAISEEvent)i.next();

// inspect the event type
switch (event.getType()) {

// if an artifact event
case CAISEEvent.ARTIFACT EVENT:

// if the artifact has been edited by anyone
if (event.getSubType() == ARTIFACT APPENDED)

// if this is the current artifact
if (event.getSourceEntity().equals(fileName))

// append the buffer of the underlying file
appendBufferFromRemoteChange(

event.getSourceUser(),
((KeyEvent)(event.getData())[0]),
((Integer)(event.getData())[1]).intValue(),
((Integer)(event.getData())[2]).intValue());

}

// update user tree
userTree.updateTree(event);

}
}

Figure 6.15: Processing events thrown by the Caise server.

152

www.manaraa.com

private void appendBufferFromRemoteChange(Client editor,
KeyEvent change,
int positionHint,
int previousFileSize) {

// check that our user location is in sync with the server
assertUserLocation(editor, positionHint);

// check that the file size is in sync with the server
assertFileSize(previousFileSize);

// update buffer
buffer.appendDocument(change.getKeyChar(), positionHint,

editor, handler.getClient());

// restore any previously selected text
redrawSelection(editor.equals(handler.getClient()));

// tell auto-save timer to restart
setBufferDirty(true);

// yeild lock if this edit originated from this app
if (editor.equals(handler.getClient()))

serverFeedbackEvents.put(new Object());
}

Figure 6.16: Updating the local view of the Java code editor based on frame-
work events.

given example, the feedback plug-in inspects the state of the current project,

and returns a collection of user-specific feedback events. These events are

propagated to the relevant participating Caise tools according to the Caise

framework’s event model.

While not given in this code example, the algorithm to derive relational

feedback is not complicated; for each user location a depth-first traversal

of the semantic model is performed using classes, methods and packages as

nodes. Associations, method invocations and inheritance structures are used

as edges. A DOI function is also applied to ensure that weak relationships

are excluded from the search results. As an example of the DOI function, all

153

www.manaraa.com

// handle events thrown to us by the caise server
private void handleRemoteEvent(CAISEEvent event) {

// if the class diagrammer’s auxilary artifact has been modified
if (event.getType() == PLUGIN EVENT) {

// update our local copy of the map
viewMap.put(event.getSourceEntity(), event.getData());

// if event was initiated by this tool instance, yeild lock, allowing the
// next event in our input event queue to be passed to the server
if (event.getSourceUser().equals(handler.getClient()))

serverFeedbackEvents.put(event);
}

// if an artifact within the project has been updated
if (event.getType() == ARTIFACT SAVED) {

// create temporary artifact
Artifact artifact = new Artifact((String)event.getSourceEntity(),

event.getSourceUser(), null);

// set parse tree buffer to the one received
artifact.commitParseTreeBuffer(event.getData()[1]);

// merge new parse tree with local model
model.addArtifact(artifact, event.getSourceUser());

// determine all declarations in updated model
modelDrawer.reloadDecls();

}

// redraw the class diagram panel
repaint();

}

Figure 6.17: Updating the view for the UML class diagrammer.

154

www.manaraa.com

final public class RelationalFeedback extends CAISEFeedback {

// return all feedback events for this instance of time
public Map getFeedback(Project project) {

// for each artifact
for (Iterator artifacts = project.getArtifacts().iterator();

artifacts.hasNext();) {

Artifact artifact = (Artifact)artifacts.next();

// for each viewer in that artifact
for (Iterator viewers = artifact.getViewers().iterator();

viewers.hasNext();) {

Client localViewer = (Client)viewers.next();

// generate warnings for all outwards references
feedback.add(getFeedbackEvents(localViewer, artifact, project));

}
}
return feedback;

}

// generate user-specific feedback events given the current model state
private Set getFeedbackEvents(Client client, Artifact artifact, Project project) {

// Walk through the model determining relationships between users and code.
// Each time a relationship is discovered, add a new feedback event
// to the given collection

/* . . . */
}

}

Figure 6.18: Implementing a custom feedback plug-in.

155

www.manaraa.com

classes in Java are related by the Object superclass; the DOI function deems

this relationship as unimportant, otherwise all users would be considered

related to each other at all times, producing spurious feedback messages.

The user presence feedback plug-in can be extended to provide additional

feedback information, which will be in turn displayed in the Feedback Pane.

New types of feedback widgets can be developed to present different types of

feedback information, where the source information is derived from custom

feedback plug-ins.

Implementing a Tool Manager Plug-In

The basic skeleton for the Java UML diagrammer tool manager plug-in is

provided in Figure 6.19. The tool manager is responsible for providing access

to all tool-related auxiliary artifacts stored on the Caise server. The routine

for updating the auxiliary artifact is also given, where first the artifact is

modified, and then a modification event is generated for propagation to all

participating tools. Each tool that maintains a local copy of the auxiliary

artifact will then update its version upon receipt of the modification event.

6.3 Example CSE Tools

In this section, example CSE tools are presented, including code editors,

UML diagramming tools and visualisation tools. In Section 6.3.3, an IDE is

also demonstrated collaborating within the Caise framework.

Many of the tools presented in this section have undergone heuristic eval-

uations to ensure their quality. Heuristic evaluations for CSE tools are dis-

cussed in Section 7.1. Additionally, a detailed user evaluation of the Java

text editor and UML class diagrammer is presented in Section 7.3.1.

The tools presented in this section have been provided to give designers

insight into the capabilities and potential of the Caise framework to support

new types of CSE tools. Demonstrations of various tools presented within

this section as they execute a range of tasks are available from www.cosc.

canterbury.ac.nz/clc/cse.

156

www.manaraa.com

public class JavaClassDiagrammerToolManager extends CAISEToolManager {

// user routine - called by server upon new project creation
public void init() {

parentProject.getAuxillaryArtifacts().put(ARTIFACT ID, new HashMap());
}

// return the correct artifact from the server, and remember who has opened it
public Object openAuxillaryArtifact(String artifactID, Client requestor) {

// retrieve the map.
Map view = parentProject.getAuxillaryArtifacts().get(ARTIFACT NAME);
// add this client to the list of viewers
viewers.add(requestor);
// return map
return viewMap;

}

// inform the server that the location of a component has changed
public CAISEEvent processToolEvent(CAISEEvent evt) {

// get auxillary artifact (class layout info) for this tool manager
Map view = parentProject.getAuxillaryArtifacts().get(ARTIFACT NAME);
// handle the request (first integer in int array)
switch (evt.getData()[0]) {
case MOVE COMPONENT:

// update the underlying auxillary artifact
LayoutPosition pos = (LayoutPosition)viewMap.get(evt.getSourceEntity());
pos.setPosAndDeclID(evt.getData()[1], evt.getData()[2], evt.srcEnity());
// generate response
CAISEEvent outEvent = new CAISEEvent(evt);
// set data to the component wrapper
outEvent.setData(wrapper);
// return response
return outEvent;

}
}

// remove this viewer from the set of viewers for this artifact
public void closeAuxillaryArtifact(String artifactID, Client requestor) {

// retrieve the map.
Map view = parentProject.getAuxillaryArtifacts().get(ARTIFACT NAME);
// remove viewer
viewers.remove(requestor);

}
}

Figure 6.19: Implementing a tool manager plug-in.

157

www.manaraa.com

6.3.1 Code Editors

Code editors are a fundamental tool for software engineers. To demonstrate

how the Caise framework can support different types of code editors, we

present three Caise-based text editing tools.

A Java Code Editor

Collaborative editors are difficult to implement. Every operation that a

shared editor supports, such as modification of text, cut and paste, undo

facilities, and text selection, must be performed with the assumption that

the document may change at any time. Additionally, the regions changed by

several users have the potential to overlap.

Fortunately, code editors are well supported within the Caise frame-

work, which helps reduce the implementation workload. Services provided

by Caise for code editors include: artifact management, support for shared

editing, build and run facilities, impact reports, user presence information,

chat communication, a full semantic model to query for name completion,

and various collaborative widgets such as the User Tree and Change Graph.

A Caise-based collaborative editor for Java is presented in Figure 6.20.

Features of this editor beyond those listed in Section 6.1 include:

• A multi-user text pane which provides remote modification highlighting

and telecursors (A)

• A collaborative User Tree that provides a semantic model-based view

of developers’ locations (B)

• An Artifacts Pane that displays the current compilation state of each

artifact as well as editor details and file information (C)

• Code repository support, discussed further in Section 8.1.1

• Collaborative undo support, discussed further in Section A.3.2

158

www.manaraa.com

Figure 6.20: A Caise-based collaborative code editor for Java.

159

www.manaraa.com

In Figure 6.20, label D presents information on the title bar. This infor-

mation contains the name of the current user, the project under development,

and the location of the Caise server.

The Java text editor provides a representative example of the capabilities

of Caise-based tool construction. This tool simply adheres to the Caise

tool protocol, and follows the design stipulations presented in Section 6.2.5

to provide multi-user artifact editing.

Software developers can use the Java text editor to work collaboratively

within a project, modifying source files, compiling the project, performing

testing and completing code reviews. Two or more users can edit the same

file at the same time if desired, or work can be performed between files with

the knowledge that all modifications are atomically integrated. Additionally,

all other Caise-based tools can operate on the same project, sharing the

artifacts in real time.

A Code Editor for a Custom Language

The Java editor presented in Figure 6.20 could easily be extended to sup-

port other languages. Prior to the development of the fully-featured Java

editor, however, a more simple code editor, presented in Figure 6.21, was

developed to support the Decaf language. The Decaf language is described

in Appendix B.

The Decaf code editor has the same basic functionality as the Java editor

such as collaborative text editing and user presence feedback, albeit with

a less comprehensive user interface. It is a proof-of-concept prototype to

illustrate that tools for multiple languages can be supported within the Caise

framework.

A Code Age Editor

Code age displays were originally proposed as part of the SeeSoft visualisation

package [36]. A code age display of a source file provides a line-by-line shading

of code, where the level of shading is governed by properties such as the age

of the code or the number of times that line of code has been modified. Code

age displays are useful for quickly conveying to developers areas of interest

160

www.manaraa.com

Figure 6.21: A Decaf collaborative code editor.

or concern within a set of source files.

Normally, it would be a complicated task to collate the information re-

quired to provide a code age display of a source file. The revision history

for each file would be mined from a code repository, and then line-by-line

properties would be calculated. Within the Caise framework, however, a

code age editor is almost trivial to support.

A Caise-based code age editor is presented in Figure 6.22. This editor

shades each line within the editor at a different level based on the number of

modifications each line has received. The number of entries in the change log

for each declaration increases the shading level for the corresponding line in

the source file. If a finer level of detail is required, shading could be performed

for each declaration in the source file instead of each line.

To derive the number of modifications per line, the tool simply inspects

161

www.manaraa.com

Figure 6.22: A code age collaborative text editor.

the underlying parse tree for the artifact supplied by the Caise server, which

incorporates a change log for each declaration. Alternatively, the Caise

event log could be inspected, but this would be computationally inefficient

by comparison. Redrawing of the code age display occurs every time the

artifact being displayed is changed; notification of this is facilitated by Caise

artifact modification events. The sequence of events for updating the code

age display is illustrated in Figure 6.23.

It is important to note that this Caise-based code age tool is not just

a display tool but an actual editor as well. It currently only supports the

Java language, but it can be easily extended to support the Decaf language

as well. Additionally, the code age editor is collaborative: multiple users can

edit the same artifact in real time, and any subsequent modifications will

update the code age display as they happen.

The code age editor is provided as a demonstration of the potential of

Caise-based CSE tools. Numerous similar tools can be envisaged, such as

162

www.manaraa.com

Figure 6.23: The event sequence for updating a code age display.

read-ware [56] applications, where declarations within artifacts are shaded

according to the number of times they have been read by developers.

6.3.2 Diagramming Tools

Another common type of tool within SE development teams are diagram-

mers. Many different types of diagrams can be supported by SE tools today,

such as class, sequence, state and use-cases. With the advent of round-trip

engineering, often diagramming tools and code editors can be integrated,

where a change in one tool will be reflected immediately in the other.

To demonstrate the capabilities of the Caise framework, several dia-

gramming tools have been implemented. As each of these tools adheres to

the Caise tool protocol, round-trip engineering is supported between these

tools and all other tools within the Caise framework.

A UML Class Diagramming Tool

A collaborative UML class diagrammer is presented in Figure 6.24. This

diagramming tool supports many common operations such as add, delete and

rename for classes, methods, properties, parameters and superclasses. The

full semantic model is inspected by the UML diagramming tool, allowing a

fine level of detail to be displayed, including interfaces, abstract classes and

methods, and visibility information.

The UML class diagramming tool is fully collaborative. A change made

163

www.manaraa.com

Figure 6.24: A collaborative UML class diagrammer.

from within the diagrammer is immediately propagated to all other diagram-

mers, and all other participating Caise tools as well. Again, support for

collaboration is provided by the Caise framework and server, which helps

reduce the tool development effort.

To support user presence feedback, the UML diagrammer includes anno-

tations to indicate remote developer positions. These annotations are visible

in a colour version of Figure 6.24; the blue shaded triangles (A) indicate

remote user locations, and dynamic tool-tips are available to give further in-

formation. Classes currently visited by remote users are highlighted by a blue

border (B), and classes selected within the tool are highlighted by a black

border (C). All user presence information is derived from feedback events,

reducing the development effort and workload of the diagramming tool.

164

www.manaraa.com

When a region of a class is selected in the diagrammer, a black border

and gray shading is drawn around the surrounding declarations (D). As part

of the Caise tool protocol, the diagramming tool informs the Caise server

about all changes in focus, which allows user proximity information to be

calculated and broadcasted to all relevant tools.

Changes to the view of the diagram, such as a repositioning of a class, are

sent to other instances of the class diagrammer, allowing each diagrammer’s

relaxed WYSIWIS view to remain synchronised. To implement this, each

time a class diagrammer component is repositioned, the drag action is cap-

tured and sent to the Caise server via the fireToolEvent() API method.

The UML diagrammer tool manager plug-in responds to this event by ad-

justing its mapping of components and coordinates, and then broadcasts the

drag event out to all tools registered for this event, which in turn update

their local views of the semantic model. Tool managers are discussed further

in Section A.3.3.

The UML class diagrammer has only been used within Java-based projects.

There is no reason why it can not work within other languages, however, as

its main interaction is with the semantic model of software, not language-

specific parse trees or source files. Only minor modifications to support other

languages are anticipated, such as ensuring that new source files are created

using the correct language-specific file extensions.

A Class Diagrammer for a Custom Language

Another diagramming tool developed within the Caise framework is pre-

sented in Figure 6.25. This diagramming tool was developed for the Decaf

language, and served as a prototype and proof-of-concept prior to the devel-

opment of the more powerful Java UML class diagramming tool.

The Decaf class diagramming tool is reasonably trivial, but it provides a

further demonstration of one of the key properties of the Caise framework—

that of multiple language support. The Decaf class diagrammer operates on

the same semantic model of software that Java tools are based upon, but on

the assumption that the project is configured for Decaf source files rather

than Java-based ones.

165

www.manaraa.com

Figure 6.25: A Decaf collaborative code editor.

The Decaf class diagramming tool was again relatively simple to imple-

ment using the Caise tool protocol and the existing functionality of the

Caise server. Feedback information related to user proximities, for exam-

ple, is generated from the general semantic model of software within the

Caise server, without the need for any language-specific extensions. This

information is sent to all relevant tools, including instances of the Decaf

diagrammer.

Several IDEs, such at Together Architect [46], support various modes of

operation. These include an analysis mode, where only a very restricted set

of operations is supported, and development mode, where low-level views

of the software project are presented. Within the context of the Caise

framework, different modes of operation can be supported by various types

of Caise-based tools. For example, the Decaf class diagramming tool can be

extended to support a limited and high-level range of operations for Java-

based projects such as adding a new class. For more comprehensive, low-level

support, the UML class diagramming tool presented in Section 6.3.2 can be

used.

166

www.manaraa.com

6.3.3 IDE Integration

Fundamental to the motivation of Caise is that Cse tools and architectures

should not be limited to a particular tool or programming environment. A

strong test of the Caise approach is the integration of existing IDEs into the

framework. It is important to be able to demonstrate that the Caise frame-

work can support existing SE tools, otherwise the claim that the framework

is genuinely useful and extensible is difficult to assert. Details of integrating

Together Architect into the Caise framework are presented in Appendix E.

6.3.4 Constructing Collaborative Widgets

In this section, the focus has been on the construction of various new types

of CSE tools. As the Caise framework provides open access to rich sources

of project information and propagates fine grained user actions in an event-

based manner, new types of collaborative widgets can also be easily con-

structed. Once implemented, these widgets can be used to further extend

existing Caise-based tools.

The general strategy for most Caise-based widgets is to listen for relevant

events, query the semantic model if required through the Caise tool API,

update any local cache of information, and then redraw the current view.

The User Tree presented in Section 6.2.3, for example, simply listens

to Caise events that specify user location changes. Caise events contain

several fields of information, as discussed in Section 5.3.2, including identifiers

to locate components within the project’s semantic model, the user that

caused the event to be fired, and the time that the event originated. The

event data for user location changes includes the fully qualified name for

the containing declaration and the name of the user that changed location.

This information is all that is needed for the User Tree to update its local

information and then redraw its tree view.

If a more complex collaborative widget is required, it is possible to in-

spect the semantic model to gain more detailed information based on specific

events. For example, it is possible to display all subclasses immediately un-

der the scope of the currently visited class within the User Tree. While this

information is not contained directly within each user location event, the

167

www.manaraa.com

User Tree widget simply needs to query the project’s semantic model to ob-

tain the current subclasses for each given declaration, and then display this

information as desired.

Summary

In this chapter, the construction of Caise-based tools has been discussed and

demonstrated. Several different types of CSE tools have been presented, and

such tools are typical of those likely to be of use in collaborative development

settings. Given these various tools and the accompanying discussion on how

new tools can be constructed, it can be asserted with reasonable confidence

that the Caise framework is complete for the purpose of supporting most

collaborative development requirements.

In Chapter 7, detailed evaluations of Caise-based tools are presented.

The evaluations show software development scenarios where Caise-based

tools are preferable over their conventional counterparts. The evaluations

also validate the quality of the Caise-based tools presented in this chapter,

and help confirm the suitability of the Caise framework in supporting CSE

tools.

168

www.manaraa.com

Chapter VII

Evaluation of the Caise Framework and Tools

Within this thesis the use of the Caise framework has been advocated as

an approach to supporting CSE. It has been demonstrated that many types

of CSE tools can be constructed within the Caise framework.

Regardless of anecdotal reasoning, Caise-based CSE tools require empir-

ical evaluation to verify claims of usability. Such evaluations will also allow

the exploration of the perceived benefits of working collaboratively in real

time.

In this chapter, various assessments of the Caise framework and sup-

porting tools are made. These evaluations are made in order to determine

the suitability of the Caise framework as an approach to supporting CSE,

and to provide insight into the viability of the current set of Caise-based

tools.

In Section 7.1, heuristic evaluations for CSE tools are proposed and re-

lated to the Caise-based CSE tools. In Section 7.2, tools to analyse activity

within Caise-based projects are discussed. In Section 7.3, a detailed user

evaluation of Caise-based tools is presented. In Section 7.4, the performance

of the Caise framework is analysed.

7.1 Heuristic Evaluation

It is important to maintain a balance between development of CSE infrastruc-

ture and ongoing evaluation. If too long is spent performing detailed analyses

of prototype systems, then not only are results likely to be of marginal use,

but also the development process is likely to be delayed or misled. Conversely,

to ignore evaluation is to risk failure because development is not guided and

informed by empirical work.

169

www.manaraa.com

Evaluating systems and techniques with typical user groups on realistic

problems is difficult, time consuming and expensive. Various approaches

have been developed.

User trials are well suited to evaluating HCI and usability aspects. These

would be most useful towards the end of the development of Caise-based

tools when a full range of industrial-strength tools is available. At that point

it will be useful to quantify such factors as the relative merits of alternative

feedback/feedthrough mechanisms and the balance between the benefits of

awareness of others and the potential distractions from one’s own tasks.

Field studies and case studies are long term undertakings. They are con-

ducted in realistic industrial environments, in order to determine the domain-

specific tasks which must be supported and to observe how particular systems

are used in practice. As well as being expensive in terms of time and cost

they also have difficulties such as provision of control groups; consequently,

they are most useful when the systems to be evaluated are at a mature level.

For Caise-based tools, group studies will be valuable to explore the patterns

of collaboration amongst users and the effectiveness of individual techniques

on particular categories of tasks.

In order to gain the most from costly evaluations it is important to be

able to address the issues of assessing systems which are in early stages of

development. This allows the developers to use results to improve the system

rather than simply quantify its performance. A range of so-called ‘discount’

evaluation techniques have been developed to achieve this. These include

heuristic evaluation [82, 80, 81], in which small groups of evaluators seek vio-

lations of a given set of heuristics. Results suggest that these techniques can

be very effective in detecting faults, thereby enabling them to be corrected

earlier in the development cycle.

This discussion of heuristic evaluations has appeared previously [29], and

has been co-authored by Neville Churcher. These heuristics are not claimed

to be complete and exhaustive; rather they are provided as motivational

examples for software engineers when assessing the structure and rigour of

CSE tools. These heuristics have been based upon our experiences when

developing CSE tools, and further HCI/ethnographic field studies into the

relevance and impact of these heuristics will be of benefit to CSE researchers.

170

www.manaraa.com

7.1.1 Heuristic Evaluation of Groupware

A set of heuristics for evaluation of Groupware has recently been proposed [4,

5]. A summary is provided here, with a brief indication of how they relate

to specific Caise features.

Cscwi Provide the Means for Intentional and Appropriate Verbal Commu-

nication. Caise provides text chat and an audio channel. External

systems, such as telephone conferencing and web cams, may also

be used.

Cscwii Provide the Means for Intentional and Appropriate Gestural Com-

munication. Caise provides a User Tree (see Figure 6.1) which

indicates the location (scope) of each user. Individual tools may

supplement this by implementing features such as telepointers.

Cscwiii Provide Consequential Communication of an Individual’s Embod-

iment. This is currently implemented through the User Tree and

Artifacts Pane.

Cscwiv Provide Consequential Communication of Shared Artifacts (i.e. Ar-

tifact Feedthrough). Caise-based tools’ buffers remain synchro-

nised to reflect changes to the underlying artifacts. Individual

tools may implement features such as colour-coding for the age

of updates.

Cscwv Provide Protection. The default access policy in Caise is to rely on

social protocols, although collaborative undo is supported within

the framework. Additional protection is provided by Caise-based

tools as required.

Cscwvi Management of Tightly and Loosely-Coupled Collaboration. The

User Tree and Client Panel enable users to assess activities of in-

terest. Feedback, tailored to reflect the users’ interests, is used to

alert users to potential conflicts.

171

www.manaraa.com

Cscwvii Allow People to Coordinate Their Actions. Communication chan-

nels and other feedback mechanisms support coordination.

Cscwviii Facilitate Finding Collaborators and Establishing Contact. The

Caise session management tools, such as the User Tree and Arti-

facts Pane, indicate which users, tools and artifacts are currently

active.

It is useful to distinguish taskwork, task-specific actions, and teamwork,

actions specific to group performance of tasks. Collaboration Usability Anal-

ysis (CUA) [88, 89] provides a technique for modelling domain-specific tasks

in order to form a basis for heuristic evaluation.

7.1.2 Heuristics for CSE Evaluations

Heuristic evaluations are a valuable complement to other techniques for evalu-

ating CSE systems, particularly for infrastructure and capability assessment—

the areas in which experiment-driven feedback during development are most

desired.

The heuristics and task modelling techniques proposed for CSCW [4, 5,

88, 89] are somewhat generic. They are extended for the purposed of CSE-

based heuristic evaluations in two ways. Firstly, there is merit in establishing

additional domain specific heuristics for CSE since this differs in many ways

from the typical CSCW application area. Secondly, there is merit in the

analysis and visualisation of Caise logs. This allows CSE researchers to

mimic many of the beneficial aspects of case studies.

The current set of CSE-specific heuristics, to be considered alongside the

generic CSCW heuristics discussed earlier, is presented here. A brief rationale

for the inclusion of each heuristic is given, together with an indication of its

relevance to the current Caise version.

CSEi Support multiple views of artifacts. A given Java class may be rep-

resented in different ways by individual client tools such as a text

editor, folding editor, User Tree or UML class diagrammer. Changes

made to the underlying artifact by any tool should be reflected ap-

propriately in each view. Caise-based tools send updated artifacts

172

www.manaraa.com

to the server. In return, they receive syntax trees corresponding to

artifacts which have been updated by others.

CSEii Support Degree of Interest based feedback/feedthrough. Central to SE

activities such as refactoring and comprehension is the notion of the

neighbourhood (context) of a particular component or change (fo-

cus). The neighbourhood indicates the most relevant components

to be taken into account from the viewpoint of the focus. For ex-

ample, when modifying a method the neighbourhood might include

the method itself, the methods it invokes and is invoked by, its host

class and its parent class. This focus+context concept is familiar

in visualisation. One common approach is the use of fisheye-view

techniques [42, 97] to de-emphasise features not in the neighbour-

hood of the focus. When Caise-based tools update artifacts, events

are generated whose foci are located at the corresponding parse tree

nodes. Caise tailors feedback according to the neighbourhood of

such nodes, determined by the semantic model, user preferences and

specific client capabilities.

CSEiii Support fine-grained integrity. CSE requires more powerful approaches

than simple CSCW applications in order to reflect the semantic and

syntactic structures implied by the source code or other artifacts.

Caise uses parse trees as the basis for the semantic model it main-

tains.

CSEiv Support multiple physical and logical granularities. Physical granu-

larity levels reflect physical partitioning (URL, directory, file, line,

. . .) while logical granularity levels (package, class, method, block,

statement, expression, . . .) reflect syntactic structure.

CSEv Support deep syntactic- and semantic-based awareness and feedback.

The generic CSCW heuristics address issues such as notification of

changes in the location of other users. In CSE, it is also important to

be aware of changes at a semantic level (e.g. method foo() has been

deleted from class Bar) or altered relationships involving components

173

www.manaraa.com

and users (e.g. another user is editing a method which the method

you are editing overrides). Caise clients are notified of changes to

the semantic model (including inferred relationships) and can reflect

these as appropriate.

CSEvi Support semantic relationships. Updates to artifacts lead to indi-

rect, and often subtle, changes in semantic relationships (extends,

overloads, overrides, calls, uses, . . .) which should be indicated to

users.

CSEvii Support private work and code integration. Users can work against a

snapshot of the project state and make experimental changes which

will not be seen by others. In Caise this simply involves client tools

temporarily detaching from the server.

CSEviii Support builds at different temporal granularities. A rapidly evolv-

ing project, where developers make interleaved changes, could po-

tentially spend much of its time in a broken state in which many

components are unable to compile. CSE systems must accommo-

date artifacts that are temporarily un-parsable and projects that

have unresolved code references. The Caise framework propagates

modification events to users directly accessing the same artifacts,

ensuring that their views are synchronised at short timescales. The

underlying semantic model is updated only when syntactic correct-

ness is restored, so that on a coarser timescale, other users always

build against a correct version.

Applying CSE Heuristics

CSE-specific heuristic evaluations, based on the combination of both sets of

heuristics, leads to the identification and classification of problems and issues

with CSE, CSE implementations and specific tools.

As an example, a problem identified in the current version of Caise tools

is a violation of heuristic Cscwiii: “The User Tree shows the user location,

but does not indicate the transition from previous locations, making it hard to

174

www.manaraa.com

decide what changes in location have occurred.” Similarly, another problem

identified as a violation of heuristic CSEv is: “Semantic feedback is delivered

mainly via text messages. A metaphor more tightly coupled to the artifact

representation would be more effective”.

Deriving Data for Heuristic Evaluation

Empirical data from logs helps ensure that the sets of heuristics used are

valid, representative and complete. Such data guides the ongoing process of

refining sets of heuristics. In return, heuristics suggest patterns which should

be observable in event logs.

Event logs can also reveal a great deal about collaboration patterns, sys-

tem performance, task complexity and many other factors. In particular,

they can indicate where refinement or extension of heuristics is appropriate,

thereby improving the quality of subsequent heuristic evaluations.

In the next section, the use of visualisations based on analysis of Caise

event logs is presented. Such visualisations can provide valuable informa-

tion about patterns of collaboration, user activity profiles and sequences of

operations in refactoring. This both complements and informs heuristic eval-

uations.

7.2 Visualisation Tools

The Caise framework incorporates an XML-based logging facility which un-

obtrusively records data about users and tools, events resulting from user

activity and the artifacts affected. Server applications may process the logs

in real time in order to obtain information, such as cumulative activity indi-

cators, for propagation to users. Alternatively, logs may be processed off-line

in order to perform detailed analyses.

The logging facility within Caise provides valuable insight as to how

software projects develop over time. Not only is a fine-grained modification

history available, information related to who made the changes and the im-

pact of each individual change is also recorded. The ability to analyse a

project’s evolution at such a fine level of detail is new to the field of SE, both

for collaborative and conventional tools.

175

www.manaraa.com

7.2.1 The Visualisation Pipeline

The potential uses of even relatively unsophisticated visualisations in Group-

ware have been recognised [8]. Pipeline-based techniques developed for soft-

ware and information visualisation [59, 23] are applicable to Caise event log

visualisation.

Figure 7.1 shows a typical log visualisation pipeline. Firstly, XSLT or

other filters select and process the required data. In subsequent stages, lay-

out tools produce 2D or 3D visualisations which are then rendered for user

exploration. These may vary from spreadsheet graphics to virtual worlds.

Figure 7.1: Visualising Caise event log data.

The Caise event logs conform to a DTD, http://www.cosc.canterbury.

ac.nz/dtd/CAISEEventLog.dtd, enabling validation to be performed. Fil-

ters, typically implemented in XSLT, extract and format the data required

for specific visualisations.

7.2.2 User Activity Visualisation

The visualisation process is illustrated with some analyses of log data from

a Caise-based development session of approximately 30 minutes, involving

four users (including the author) working on a project consisting of ten Java

classes.

Figure 7.2 shows two views of a visualisation based on treemaps [64]:

in this case the pipeline ends with a treemap visualisation tool. The log

is transformed into a tree representing a hierarchy of events structured as:

session → user→ event type. Similarly, other structures (e.g. component →
event type → user) may readily be obtained.

Figure 7.2(a) shows that two users, Neville and Wal, are responsible for

most of the events generated in the session. Figure 7.2(b) provides additional

176

www.manaraa.com

(a) Events originated by each user (b) Events of each type originated by
each user

Figure 7.2: Treemaps showing events in a Caise session.

information about the proportion of events of each type resulting from indi-

vidual users’ actions. In this case, it can be seen that Carl and Wal have a

greater proportion of feedback events than the other users.

From this information, it can be deduced that Tony was the least active

user in this session (in fact he left before it ended); Neville and Wal were

responsible for the bulk of the coding done during the session; Carl and Wal

collaborated most closely (i.e. concurrently edited the same artifacts) while

Neville and Wal worked more independently.

Figure 7.3 illustrates some temporal analysis options for the same data

set. In this case the pipeline ends with a file readable by Excel. Figure 7.3(a)

shows the number of events generated by the activity of each user during a

100 second interval as well as the overall totals. Peaks and lulls in activity

can be seen clearly. In Figure 7.3(b) the events are broken down by type,

irrespective of the user responsible for their generation.

Again patterns within the event log are evident. Most events in this

session are Artifact events since significant text entry is occurring; Client

events are mainly associated with location changes within artifacts; Change

events arise from semantic changes such as altered inheritance relationships

and are associated with Feedback events which alert other users to such

changes.

177

www.manaraa.com

(a) All events per user (b) Events by type

Figure 7.3: Temporal analysis of user activity within a Caise-based project.

7.2.3 Artifact-Span Visualisation

Figure 7.4 shows the specific artifacts, in this case Java source files, modified

by each user during the session. In this case, the pipeline produces a file for

the popular dot layout tool [45]. In a dynamic version of this graph, edges

are added and removed to reflect the current session state.

While the visualisation presented in Figure 7.4 appears somewhat trivial,

it illustrates the potential of the Caise framework to supply fine-grained

information related to the development of the software project over long

periods of time—without impeding the participating developers. Without

framework-based recording of developer activity, it is considerably more dif-

ficult to analyse and visualise the individual efforts of the development team.

7.3 User Evaluations

The heuristic evaluations for CSE presented in Section 7.1 assisted in keeping

all CSE tools well designed during the prototype development of Caise. An

empirical user evaluation, however, will help determine if developers are likely

to embrace these new tools and provide objective measures related to SE

tasks. Successful evaluations will also verify that the tools have a degree of

robustness.

178

www.manaraa.com

Figure 7.4: Artifacts accessed within a Caise-based project.

The premise of the research in this thesis is that enabling more collabo-

ration in SE through advanced tool support will in turn raise the restricted

levels of communication and enable better development practices. To val-

idate this premise, a comparison was made between CSE tools with their

conventional counterparts, with the aim of showing scenarios where the col-

laborative tools are preferable.

The term preferable, however, is difficult to define objectively within em-

pirical SE research. Preferable for CSE tools can have many meanings—faster

task completion rates, ease of use, fewer bugs in resultant programs, encour-

agement of greater communication between programmers, greater program

comprehension, greater awareness of other programmers’ changes to name a

few. Additionally, it is difficult to define the range of allowable values for

external factors that affect the evaluation, such as size, type and difficulty

of evaluation tasks, experience of participants, tools to be used within the

control group, and features of the tools being evaluated.

179

www.manaraa.com

Accordingly, it is challenging to design a test that can evaluate all aspects

of SE within a single context. Therefore, the evaluation presented in this

section was limited to the objective measurement of task completion rates

for mechanically scripted tasks between pairs of collaborating users, as well

as gathering subjective measures such as user preferences. The hypothesis

was that collaborative tools give task completion rates superior to those of

their conventional counterparts for selected typical coding scenarios.

To the best of my knowledge, this is the first empirical evaluation of task

completion rates and subjective measures for synchronous CSE tools. Other

empirical studies have been performed previously that focus on tool support

for collaborative software development [106, 77], but none have evaluated

concurrent real time development tools.

7.3.1 Evaluation Method

A full and detailed description of the evaluation method is presented in Ap-

pendix F. In this section, only an overview of the evaluation method is

given.

Experimental Design

A comparative randomised design, using one-way analysis of variance (ANOVA),

was used to measure differences between SE tools operating in various modes

of work. Pairs of co-located users working on adjacent workstations were

the experimental units, with task completion rates the measured dependent

variable. The independent variable was mode of tool operation. Two tool

modes, or levels, were evaluated for the independent variable, consisting of

collaborative and conventional tool support.

Each evaluation session was performed twice to compare task completion

rates for each tool mode with a second factor—type of task. Two types of

tasks were examined: between files and within files tasks. Between files tasks

were such as renaming a method for one user while the second user made a

new call to the method using the original name. Within file tasks were such

as changing the structure of a control statement by one user while the second

user changed a conditional within the statement.

180

www.manaraa.com

Several control variables were identified, such as individual programmer

ability, software development methodology followed, and difficulty of pro-

gramming task given. As described in Appendix F, these control variables

have been addressed by the experimental design.

The null hypothesis is that for each task type, no difference in task com-

pletion rates between the two modes of tools exists. The alternative hypoth-

esis for each task type is that there is a difference in task completion rates.

Rejection of the null hypothesis provides evidence that for a selection of sim-

ple but common SE scenarios, one type of tool is preferable over the over in

terms of developer performance.

The interaction between type of task and tool mode was not assessed

in this evaluation. Additionally, differences in task completion rates for the

two types of tasks within each tool mode were not analysed, as this is of no

immediate interest to the current research.

Experimental Environment

All evaluation tasks were based on a simple 1000 line graphical Java appli-

cation. The program consisted of eleven classes within a package that dis-

played several animated sequences. While the program was relatively small,

it contained some complex design idioms such as behavioural, creational and

structural design patterns, use of collections classes, graphics code and event-

based actions. It was trivial for participants to assert that their changes had

taken effect; the program at startup would show the animations in their cur-

rent state which could be immediately verified for correctness. A screen shot

of the program in a typical working state is presented in Figure 7.5.

All tasks were performed primarily in the Java editor. The UML class

diagrammer was available for visualisation of the changing program structure

and for user presence awareness. In collaborative mode, the tasks could be

performed using the real time file sharing support of the tools. In conven-

tional tool mode, the participants were able to share and synchronise their

files through the inbuilt code repository support. The code repository in-

terface was minimal to avoid confounding the experiment, as explained in

Section F.3.4.

181

www.manaraa.com

Figure 7.5: The graphical interface of the program under modification during
the evaluation sessions.

Although two different modes of work are being compared—conventional

versus collaborative—the comparison is fair. Code repositories are the main-

stream technology for collaborative SE, the only other commercial option

today is pair-programming with a shared keyboard and display.

For both types of tasks, there was a deliberate and unavoidable conflict

between the instructions for both participants. The coding conflict was in-

troduced to replicate the typical SE scenario of conflicting changes between

a pair of developers. To eliminate any variance caused by differing program-

mer abilities between groups as team members attempt to resolve the coding

conflict, all steps within each task were scripted for both participating users

per session. Users were instructed to follow the scripted programming steps

without deviation, regardless of their own opinions on how to complete the

overall task or how to resolve the inevitable conflict once discovered.

Each task was timed, and participants were instructed to work as fast as

possible without rushing; this ensured that the participants were focused on

completion rates rather than collaboration. To complete the tasks, however,

a degree of collaboration was inevitable, which suggests that the tasks were

still realistic. The participants had a brief reading period before being timed,

where they could clarify any questions related to the task. The participants

were not permitted to discuss the task with each other at this stage, however.

They could only communicate with each other when completing the task,

both face-to-face and by observing the feedback from the tools.

When the inevitable conflict within each task was discovered, the partic-

182

www.manaraa.com

ipants were then instructed to access an answer sheet which contained the

predetermined resolution for the given task. Under normal conditions pro-

grammers would discuss and resolve the conflict themselves, but this factor

had the potential to confound the experiment. Timing would stop as soon

as the problem was corrected, the code compiled and synchronised, and the

program was demonstrated to execute correctly on the workstations of both

users.

Upon completion of each task a survey was given to each participant to

answer in private. This allowed a comparison of each participant’s perceived

level of frustration, success and effort for each tool mode and task type.

Finally, another survey was completed at the end of each evaluation session,

providing a subjective summary of each user’s preferences and comments for

later comparison.

7.3.2 Evaluation Results

This section provides details on the findings of the user evaluation. The

results are discussed further in Section 7.3.4. In Appendix F, a detailed

discussion is provided on how the statistics in this section were derived and

what their meanings and implications are.

Task Completion Times

The task completion times for the tools in collaborative mode were at least

twice as fast as the times recorded for the tools in conventional mode. The

comparative differences are presented in Figures 7.6 and 7.7. Error bars show

the mean ± one standard error.

For within file tasks the difference between tool modes was highly signifi-

cant (F1,10 = 38.3, p<0.01), as were the between file differences (F1,10 = 34.2,

p<0.01). These significance levels give us confidence that the results were

not obtained by chance; statistically, these results are expected for 99.9% of

trials that repeat this experiment.

183

www.manaraa.com

Figure 7.6: Mean task completion times for within file tasks.

Figure 7.7: Mean task completion times for between file tasks.

Subjective Assessment

Table 7.3.2 presents the findings of the survey given at the end of each task

within the evaluation sessions. The survey is based on the NASA Task Load

Index [52] with a 20 point Likert scale. From the table it is apparent that for

both task modes, participants felt strongly that they understood the changes

of others better, and it was markedly easier to control source files using the

tools in collaborative mode.

For perceived frustration, perceived effort and awareness of local changes,

there was a statistically significant difference between the mean response in

one of the two task modes in favour of collaborative mode. For the remain-

ing task mode in each survey question, the difference was still favourable

184

www.manaraa.com

NASA Task Load Index: Within, Between
Understanding
own changes

Understanding
others’ changes

Ease of File
Control

Perceived
Effort

Perceived
Success

Perceived
Frustration

Collaborative:
Mean 14.7, 12.1 18.8, 9.2 16.3, 15.9 3.9, 2.9 17.9, 16.3 3.7, 4.3
(s.d.) (4.9, 4.2) (1.4, 5.9) (3.5, 3.5) (3.5, 2.5) (2.2, 2.5) (2.4, 2.8)

Conventional:
Mean 9.0, 8.8 4.5, 1.8 8.4, 7.6 5.3, 7.5 15.5, 14.4 6.1, 8.3
(s.d.) (4.5, 6.0) (4.3, 1.4) (4.3, 5.6) (3.8, 5.5) (3.6, 4.3) (4.0, 5.7)

<.01, *<.05 ***,– ***, ***,*** –,* –,– –,*

Table 7.1: Summary of the subjective measures for tasks: NASA-TLX work-
load ratings. Possible values range from 1 (low) to 20 (high).

towards collaborative mode, but the difference was not statistically signif-

icant. For the perceived success survey question, neither task mode gave

a significantly difference in mean response, although the participants again

showed a lenience towards the collaborative version of the tools.

User Preferences

Table 7.3.2 presents the findings of the survey given at the end of each

evaluation session. This survey focused on general user preferences using

a 20 point Likert scale. The questions within this survey are also presented

in Table 7.3.2.

Order Question Response:
mean
(s.d.)

1 In a collaborative, distributed setting, how useful do
you think this type of system will be?

15.7 (2.1)

2 In a collaborative, co-located setting, how useful do
you think this type of system will be?

15.8 (1.9)

3 How much does it help to have the source code shared
and managed for you?

16.4 (2.2)

4 How often would you like to work on collaborative
tasks with a system such as this (a system that up-
dates and shares source files in real time)?

14.3 (2.2)

5 How useful did you find the ability to know what the
current global state of the project is?

14.8 (3.5)

6 How adequately was the awareness support provided
(such as user location feedback)?

13.0 (4.1)

Table 7.2: Summary of the subjective measures for overall preference. Pos-
sible values range from 1 (low) to 20 (high).

185

www.manaraa.com

The results of the user preferences survey were encouraging—all responses

ranged from positive to extremely positive. The participants foresee the

collaborative tools as useful in both co-located and distributed settings, they

find the real time synchronisation of code helpful, the feedback support was

also perceived as useful, and they claim they would use CSE tools such as

those used in the evaluation often if made available.

User Comments

Examples of recurring comments made during and after the trials are listed

in Table 7.3.2. Of the positive comments a conclusion can be drawn that all

users enjoyed using the system, and they claim that they would use it for most

situations given the opportunity. They also stated that they liked having the

source code managed for most tasks. These comments are corroborated by

the results of the user preferences survey reported in Section 7.3.2.

Type Comment
✓ “The system made coding more enjoyable.”
✓ “I liked the concept of real time development.”
✓ “The collaborative [user] tree was really helpful.”
✕ “The [editor] lag was a bit annoying.”
✕ “A private work area is needed for offline [development] spikes.”
✕ “The editor needs tele-scrollbars to give a better indication of where

other users are within the same file.”

Table 7.3: Post-session user comments.

Of comments to help improve the system, a private work facility was

suggested if the tools are to be used in a commercial setting. The remaining

comments for improvement were all related to usability issues that will be

addressed in the next development phase.

7.3.3 Threats to Validity

While the CVS interface was not as complex as those typically supported in

IDEs, the core facilities of check-out, check-in and merge were present within

the control version of the trial tool. These facilities were well-aligned with

186

www.manaraa.com

the experiment, which specifically aimed to compare real time shared code

editing to the copy/modify/merge idiom of code repository systems.

For a fair user evaluation, the experiments had to be realistic yet measur-

able. If the experiment tasks were too sterile then there was the risk of having

results that are valid but not genuinely useful in a global context. While the

evaluation tasks were required to be simple to enable them to be repeatable

and free from confounding factors, they still represented an approximation

of tasks and conflicts that are likely to be encountered in everyday SE.

Another potential threat to validity is that of using students as evaluation

subjects. The students selected for this experiment, however, all had strong

interests in software engineering, and were conversant with SE aspects such

as design patterns, test-driven design, software development methodologies

and UML. Therefore, I feel that the evaluation subjects were representative

of candidate users of CSE tools.

All other confounding factors that could cause a threat to the validity of

this evaluation have been addressed by the experimental design. Full details

of the experimental design are given in Appendix F.3.

7.3.4 Discussion

This experiment focused on pairs of collaborating users. While no inference

can be confidently made as to how the CSE tools will perform when used

by large groups of developers working concurrently, the experimental design

does give us considerable insight as to how small groups of developers will

react and perform when using real time CSE tools.

The results obtained for task completion rates and subjective measures

were surprisingly good considering that no attention had been paid to making

the tools particularly user friendly or refined. While it is reasonable to assume

that some difference would exist between the two tool modes in favour of

collaboration, it was surprising that the differences were so large. More

pleasing, however, were the subjective results which showed that users liked

using the system and agreed with the perceived benefits to SE given in this

thesis. It was always a concern that even though the users could perform the

tasks faster, they did not like using the tools in collaborative mode.

187

www.manaraa.com

While the evaluation tasks involved at least a degree of collaboration

between users, the tasks were not designed specifically in favour of a highly

collaborative approach. Therefore, for tasks that are highly collaborative,

such as debugging or demonstrating new ideas, it is reasonable to believe

that the tools in collaborative mode would perform even better than in this

experiment. Similarly, as the users only had ten minutes worth of training in

collaborative tool mode, it is possible that the collaborative features of the

tools were not used to their full potential. Given more experienced users, it

is likely that the task completion rates could have been improved upon, and

the feedback on the collaborative mode of work might have been even more

positive.

When referring to the data presented in Figures 7.6 and 7.7, there was

a considerably larger gain for collaborative within files tasks than collabo-

rative between file tasks. The likely explanation for this is that it is not

always possible to completely avoid transactional conflicts during between

files tasks as it is to avoid merge conflicts during within file tasks. Program-

mers working without consideration for other users still have the potential

to create transactional errors during between files tasks, which ultimately

must be corrected. Regardless of the relative difference between the two task

types, between files tasks are still a lot faster in collaborative mode than

conventional mode because the error is detected as it is made, instead of

waiting for the results of a file merge and project rebuild.

An interesting observation during the experiments was that when partic-

ipants did not stop and talk with each other in collaborative mode for within

files tasks, they still managed to accomplish their code changes without no-

ticeable hindrance. They simply engaged in a brief ‘editing war’, where even

though their changes were being interrupted, both users very soon had their

code changes in place. Under normal circumstances, users are likely to pause

development activity and discuss the collaborative edits that occurred in the

same region of code. Participants in this experiment, however, were highly

task oriented due to the nature of the evaluation.

188

www.manaraa.com

Summary

Through this user evaluation, example coding scenarios have been given

where the Caise-based CSE tools not only outperform their conventional

counterparts, but users prefer using them, their perceived success is higher,

and their perceived effort and frustration levels are lower. The results strongly

suggest that collaborative tools such as text editors can improve the produc-

tivity of software development. Subjective results also suggest that providing

users with a constantly updated global project state appears to help devel-

opers rather than hinder.

The results of this evaluation give credibility to the assumption that com-

puter mediated support for CSE can provide real benefits to software engi-

neers. It has been demonstrated that the Caise-based CSE tools stand up to

testing with users that have had no previous exposure or experience to them,

even when completing considerably comprehensive tasks within a non-trivial

application. From the results of this evaluation, I am strongly encouraged to

continue with further research and development of tools for CSE.

7.4 Framework Performance

Another important consideration when discussing the design and use of tools

for CSE is that of performance. The performance of the tools must be sat-

isfactory, and there should be no theoretical limitations of the framework

that will prevent the tools from being useful in realistic environments. While

the core response speeds and resource usage of Caise and its supporting

tools have proved acceptable over a long period of subjective testing and

user evaluations, it is important to note the effects of code size and number

of concurrent developers on server memory load and tool response times.

7.4.1 Memory Load

To provide features such as impact reports and user proximity feedback, the

Caise server maintains a semantic model of the software within the project.

An immediate concern is that of memory usage; if a large amount of memory

is required for each line of code added to the semantic model, projects of a

189

www.manaraa.com

realistically large size might be beyond the scope of the Caise framework.

Figure 7.8 presents the amount of memory used per line of code across a

range of Caise projects. For any Caise-based project, the server first loads

in all packages, classes, interfaces and methods directly accessible from any

Java source file. This brings the initial project semantic model size to around

60 MB. From this point onwards, however, most of the components that

the modelled software rely upon are now loaded, and the project semantic

model size increases only linearly in relation to the number of classes and

methods declared in each source file. Each subsequent line of code requires

approximately only one kilobyte of server memory.

Figure 7.8: Lines of code versus server memory usage.

For large software projects where there can be potentially millions of lines

of code within a single version, an alternative to an in-memory semantic

model might be required. In commercial settings, it is likely that specialised

hardware can support multiple gigabytes of memory. In other situations

where mass memory capabilities are not available, the Caise framework can

easily be extended to incorporate an OO database for semantic models of

potentially any size.

While the memory requirements for a Caise-based project may seem

significant, it is important to note that no other demands are placed on

memory resources throughout the entire development environment. Unlike

190

www.manaraa.com

other architectures including IDEs, each CSE tool can rely on the Caise

server for all parsing, analysing and semantic modelling of the software; tools

themselves do not necessarily have to store a replica semantic model.

7.4.2 Network Load

The design of the framework ensures that network loads are as low as possible,

and analysis of traffic verifies that for small user groups, no considerable

strain is placed on a 100 Mbps Ethernet local area network. Even as the

number of concurrent users increases to that of large development teams,

today’s networks are capable of accommodating the load.

When testing on wide area networks, the data throughput requirements

are low enough for clients to be connected to the server from dial-up networks,

but the latency can cause edit delays of up to several seconds. To support

low speed wide area network connections, an alternative distributed system

might be necessary where the anticipated results of modification requests

are immediately represented in the originating tool’s display. In this case, a

synchronisation routine will be required to run in a separate thread to resolve

any modification discrepancies between tools.

At present, fault tolerance within Caise has not been addressed. User

trials and experimentation have been limited to local networks, where error

rates are low and are readily addressed by underlying communication proto-

cols. For high-latency, high error network contexts such as global software

development, techniques for fault tolerance may need to be identified.

Performance Details

When performing packet captures to analyse network data, a compressed se-

mantic model of software containing a small project is approximately 150 Kb

in size, or 100 Ethernet frames. This is not a significant amount of data to

transmit given the operational capabilities of any modern network.

Caise-based events, such as keystrokes and feedback messages, typically

use approximately 800 bytes of data when broadcasted. As a single Ethernet

frame can carry up to 1500 bytes of data, the transmission of Caise events

should not have any significant event on an existing network.

191

www.manaraa.com

API calls were also analysed. Each call from a CSE tool to the Caise

server was measured as a 50 byte packet. Responses from the server were

the same size. This implies that even a large number of consecutive requests

to the Caise server from CSE tools will not cause any serious networking

issues.

7.4.3 Response Times

Performance measurements illustrate that as the number of users and the size

of the project semantic model increases, response times will remain stable.

The direct impact of increased numbers of concurrent users within a Caise

project has been observed to be negligible; the number of connected users

or opened files does not have a noticeable effect on server memory usage or

response times. If all users are highly active at the same time the server

response times will slow down temporarily, but in reality this is an unlikely

scenario.

Even if a project has a large semantic model, this does not necessarily

affect the response times of the server. Most operations such as adding a new

method to a class or querying the semantic model for a specific relationship

only require the traversal of a fixed subset of the entire semantic model space.

Therefore, even as the semantic model grows in size, the response times will

stay approximately constant.

Performance Details

Using the hardware described in Section F.3.3, code edits take approximately

100 milliseconds from the originating keystroke to being updated on all re-

mote views. Semantic model changes, normally invoked through the class

diagrammer, take approximately one second to be updated on all views. The

delay is caused by the server processing the request and modifying the un-

derlying semantic model, which text editors will not directly encounter.

To traverse the entire semantic model of the Animation Application pro-

gram through a server application, 516 classes are encountered. This takes

approximately 3.5 seconds, including the time to draw the results to a text

pane.

192

www.manaraa.com

7.4.4 Feedback Information versus Number of Users

Performance measurements presented in this section indicate that the Caise

framework and associated CSE tools can scale to moderately sized code-bases

and development teams. With the addition of server-level hardware or a se-

mantic model caching mechanism, the Caise framework will be able to scale

to large code-bases and number of users, as both of these aspects introduce

only a linear increase in server resources. As the number of concurrent users

increases, however, the amount of generated feedback may increase exponen-

tially, as each user has the potential to work on regions of the software that

are related to all other users, either directly or indirectly.

While the generation of large volumes of feedback information will have

some impact on the Caise server’s processing load, the scalability issue most

significant is that of management of feedback information per CSE tool from

a user interface perspective. To address the possibility of feedback saturation,

tailoring of feedback is discussed in Section 8.2.1.

Summary

Very few CSE research projects have conducted evaluations of any type for

the resultant tools and technologies produced. As far as I am aware, no formal

user evaluations of synchronous CSE tools have been carried out prior to the

Caise research project. As the focus for the Caise framework was to produce

practical solutions to current SE tool limitations, constant evaluation of the

Caise framework and tools has been central to the research process.

In this chapter the issue of tool suitability has been examined. The vari-

ous forms of evaluations indicate that the Caise-based CSE tools presented

in this thesis are useful for the support of CSE. The performance of the

Caise framework has also been discussed and shown to be suitable for most

development purposes within small teams and code-bases.

In Chapter 8, methods to expand the scope of the Caise framework are

presented. Open research problems are also discussed.

193

www.manaraa.com

Chapter VIII

Caise in an Industrial Context

In this thesis, the Caise framework has been presented, discussed and

evaluated. The work in this thesis demonstrates that the Caise approach

is appropriate for the support of CSE, and that useful CSE tools can be

constructed.

In this chapter, a discussion is given on how the scope of the Caise

framework can be expanded for industrial use. In Section 8.1, a discussion

is presented on how large groups of users can be accommodated within CSE

systems. Areas of enhancement, in order for the benefits of Caise to be fully

realised within an industrial setting, are listed in Section 8.3.

8.1 Managing Groups and Individuals

In this section, the key scalability issues that challenge CSE are presented.

Techniques for addressing scalability are listed for when the limits of CSE

tools are exceeded. These techniques are available to all CSE systems, not

just the Caise framework.

For a small group of developers, a small set of source files, and a well

defined SE process, real time CSE tools are likely to be readily suitable.

However, as the number of developers increases, the project size in terms of

lines of code grows, or the developers are adverse to continual collaboration,

CSE tools may not be as suitable as some conventional tools that permit

long periods of uninterrupted private work.

8.1.1 Working from a Source Code Repository

Figure 8.1 presents the typical version history for a software project being

developed with real time synchronous CSE tools. As the entire project is

194

www.manaraa.com

shared, concurrent modification of the project alters the single project trunk,

and checkpoints are made only to provide an offline revision history. Individ-

ual source files and other artifacts may evolve over time but only one project

branch ever exists.

Figure 8.1: A typical revision trunk for a collaborative software project.

The jitter of concurrent changes within the same region of code may

appear mildly distracting when compared to working in isolation, but this is

offset by the added awareness of the actions of others, and the avoidance of

costly merge processes.

From a viewpoint of real time CSE, source code repository systems may

at first appear antithetical to CSE tools; the purpose of tool support for CSE

is to enable developers to work together, not to partition themselves. While

this argument is certainly true for small development groups, within the

realm of open-source software development the use of source code repository

systems is essential and unavoidable.

Users of real time systems are still able to work collaboratively within an

environment controlled by a code repository. This is achieved by forming a

group of collaborating users, and working collaboratively through CSE tools

within this group. The set of source files within the shared project will be

based from the latest version from the code repository, and this collaborative

group will be required to periodically re-synchronise their code base with

that of the central repository.

This approach still subjects the collaborative group to the same prob-

lems that the code repository users face: merge and transactional conflicts

upon re-synchronisation with the code repository. However, the collabora-

tive group benefits from having the ability to work together within the group.

Additionally, if the area that the collaborative group is working on within

195

www.manaraa.com

the project is loosely coupled from the rest of the project, merge conflicts

should largely be avoided, and transactional conflicts are also likely to be

low.

The success of this approach depends on the number of collaborative

groups within the entire project, the size of each collaborative group, the

ratio of collaborative to conventional developers, the degree of coupling be-

tween packages within the project, and the development approach of the

programmers.

A Caise project can operate on a working copy of source files checked out

from a source code repository located elsewhere such as SourceForge [84]. In

fact, the Caise-based Java text editor, presented in Section 6.3.1, implements

support for CVS code repositories [9]. Using this code editor tool, a developer

within a collaborative group can upload the Caise-based artifacts to a CVS

server, and if required, refresh the Caise-based project’s artifacts with the

latest version from the repository as well.

The Java text editor presented in Section 6.3.1 employs a syntax directed

form of support for code repositories, which is illustrated in Figure 8.2. CVS

is used as the underlying code repository system, but as CVS can be trou-

blesome for new users to master, only valid and meaningful CVS operations

for the given state of the repository are available.

(a) Download (b) Upload

Figure 8.2: A syntax-directed code repository interface.

To explain the syntax directed code repository interface further, if the

source files within the current Caise project are up-to-date with the code

repository, no options are available from the repository menu visible in Fig-

ure 8.2. If the code repository has newer versions of any file compared to the

Caise tool’s copy, the only code repository option available, as illustrated in

Figure 8.2(a), is to download the new files to the Java editor. An automatic

merge of the old and new files within the editor is then performed. If the

196

www.manaraa.com

Java editor has a newer version of any file than the code repository, the only

repository option available, as illustrated in Figure 8.2(b), is to upload the

tool’s files back to the code repository.

The repository interface provides an easy mechanism for using a source

code control system, and avoids problems commonly associated with code

repositories such as forgetting to upload all modified files, forgetting to down-

load more recent files and losing synchronisation with the rest of the devel-

opment team. A simple and effective repository interface was essential for

the user evaluations presented in Section 7.3.1. During this evaluation, many

users commented on how intuitive and easy-to-use the code repository inter-

face was, and they would like the same interface on all of their usual SE

tools.

It is important to note that CVS support is implemented in the Caise

tools; the Caise server requires no knowledge of source code repositories in

order for them to be used by Caise-based tools. The Caise server simply

treats the live Caise-based artifacts as the only version that exists, even

if these files were originally downloaded from a source code repository. In

the case of working with source files from a source code repository, the tools

at startup typically download the latest version of the files from the code

repository and then update the Caise server with these new files.

8.1.2 Partitioning of Projects

In a well designed software project, there are likely to be separate areas for

developers to focus on, and a natural partitioning of roles can take place.

A simplistic example of such a project is presented in Figure 8.3. In this

example, one group of users can work on the GUI, another group can work

on the database, and very few conflicts are likely to occur between groups.

It is important to note, however, that even in a well partitioned and highly

modularised project, there will be a multitude of code relationships and de-

pendencies between packages and classes.

Within professional development groups, well partitioned projects and

structured development approaches are likely. In this situation, where rela-

tively few changes within a partition should affect the development efforts of

197

www.manaraa.com

Figure 8.3: A simplistic example of a well partitioned software project.

those working on other areas of code, development crosstalk is likely to be at

an acceptably low level. In this case, the use of real time CSE tools is also

suitable.

In some projects, however, even if they are well partitioned, it is possible

that the developers will prefer no crosstalk from programmer activity within

other partitions of the project. In this situation, it is still possible to accom-

modate collaboration within each development partition by using the code

repository mechanism discussed in Section 8.1.1.

There are three main types of configurations available for projects that

are developed by collaborative groups, as illustrated in Figure 8.4. These

configurations are:

Individual Each user works individually, each with their own local copies

of source files, using a code repository to integrate changes

Partitioned The developers are split into sub-groups, and developers work

collaboratively within each sub-group. A code repository is used to

merge files between sub-groups

Global All developers work together in real time using CSE tools on a shared

project semantic model. A code repository system is not required for

file sharing

By partitioning a group of developers within a project into sub-groups,

crosstalk between groups is eliminated. The trade-off, of course, is that

communication between groups is likely to be reduced and a synchronisation

process must take place at regular intervals between groups. However, if the

198

www.manaraa.com

Figure 8.4: Various configurations for group work using CSE tools.

project is well designed and the developers use a structured SE approach,

merge and transactional conflicts are likely to be infrequent.

The partitioned approach is illustrated in the middle segment of Fig-

ure 8.4. Crosstalk is likely to be less than in full collaborative mode, and

merge conflicts and transactional conflicts are also likely to be less frequent

than in the conventional, code repository mode. It should be noted, however,

that this approach should only be used when groups of developers intention-

ally wish to separate themselves.

This choice of group configuration depends on how well the project is

partitioned, how many developers are likely to work within each partition,

and the programming methodology employed.

As illustrated in Figure 8.4, the conventional development end of the

spectrum allows each user to have his or her own code base to work on.

Usually, each programmer will try to modify only the subset of files within

his or her current area of focus [51]. In this configuration, the individual

programming effort is relatively easy, but transactional and merge conflicts

are likely.

At the other end of the spectrum, using a single shared project negates

all use of code repositories. This implies that while higher levels of develop-

199

www.manaraa.com

ment crosstalk are possible, transactional conflicts are less likely and merge

conflicts are completely avoided. In this thesis, it is argued that for most

small and medium sized development groups it is better to work as one col-

laborating team—development jitter during spikes of activity is preferable to

ongoing conflicts and reduced programmer communication between develop-

ers.

8.1.3 Compilation Crosstalk

Unexpected real time code modifications by other users, while surprising, do

not significantly degrade a developers ability to work within a collaborative

setting. Evidence of this was given in Section 7.3. If one developer is working

on the same line of code as another developer, it is likely to be beneficial if

both parties pause and discuss the current activities, although programmers

may choose to ignore the presence of others and carry on development. A

major problem with real time development, however, is that of compiling

code during a time of concurrent development activity. This problem is

hereby termed compilation crosstalk.

In a conventional development setting, the problem of compilation crosstalk

does not occur. As each developer’s code base remains isolated from the

central repository and other developers’ caches, system compilation can be

performed without hindrance. The problem with conventional development,

however, is that developers will not be made aware of concurrent modifica-

tions to the code base by other users; modifications which have the potential

to significantly alter the semantics of the software project.

In both collaborative and conventional settings, if one developer makes

a modification that is relatively isolated from all other areas of a program,

all other developers should not necessarily be placed in a position where

they are prevented from compiling. For CSE tools, however, if the first

developer has not completed their changes, or their changes are syntactically

or semantically incorrect, the project will fail to build even for other users, as

the entire project is shared in real time. To resolve this problem, the project

Build Pane has been refined with a special collaborative scope feature, which

is presented in Figure 6.4.

200

www.manaraa.com

The collaborative scope facility within the project Build Pane allows

compilation to take place from within three different modes: current, last

parseable and last buildable. In current mode, the pane attempts to build the

latest version of the code, which will fail if any recent remote changes have

broken the build. In last parseable mode, the build only takes into account

the last syntactically correct version of each file. This way, if a remote pro-

grammer is currently editing a file, his or her changes will only take effect

once the code is properly formed. In last buildable mode, the panel will

produce an executable based on the last version of the program that has no

build errors. The different types of collaborative scope within the project

tools panel are depicted in Figure 8.5.

Figure 8.5: The various modes of collaborative view when compiling from
within a Caise tool.

From the previous discussion of Figure 5.7, the three conceptual layers

of the Caise framework are: CSCW, CSE, and SE. These three layers are

also mirrored in the Build Pane’s modes of collaborative scope. The current

scope represents and immediate or synchronous view of the artifacts as they

are edited by real time tools (the CSCW layer). The last parseable mode of

201

www.manaraa.com

collaborative scope represents the server’s view of all syntactically complete

artifacts (the CSE layer). Finally, the last buildable mode of collaborative

scope represents the latest version of the project that successfully builds (the

SE layer).

The collaborative scope facility has proved to be a particularly useful fea-

ture for CSE tools. The collaborative scope facility for avoiding compilation

crosstalk may provide an alternative to partitioning a group of users when

the activity of remote users makes it difficult to compile the shared set of a

project’s source files. As the collaborative scope facility has the potential to

be a general strategy for all CSE tools, it will be an ideal candidate pattern

of CSE if widespread use eventuates.

Project Build Likelihood

Related to compilation crosstalk, Figure 8.6 presents the likelihood of build

failures for conventional and collaborative modes of work. This data in this

figure is anecdotal, based on observations made during the user evaluations

presented in Section 7.3: the software project is likely to be in a buildable

state more often when users are given immediate change impact information.

CSE tools are self regulating where it is always likely that the project will

build with minimal effort—presuming that developers always take appropri-

ate action when feedback related to broken units of code is received.

Figure 8.6: The likelihood of build failures: collaborative versus conventional
modes of work.

Conventional modes of work, however, are subject to the use of the given

202

www.manaraa.com

code repository system, which has the potential to involve large delays and

development skews before getting the main branch into a buildable state

again. This increasing effort of code integration is indicated by the spikes

sketched in Figure 8.6. Therefore, even though it might take more initial

coordination and collaboration to develop software using real time CSE tools,

the likelihood of being able to build the project at any given point of time is

relatively high.

8.1.4 Private Work

The main focus of CSE systems is to enable developers to work together.

The concept of private work, where developers modify a copy of a code base

independent of other concurrent developer activities, may appear antithetical

to the principles of CSE, but it is on some occasions essential in real-world

SE scenarios. This has been discussed as a pattern of CSE in Section 3.4.2.

If a given developer deems it essential to work in isolation for a consid-

erable amount of time, he or she can work on an alternative branch of the

code base using a code repository system, and merge the changes back into

the main CSE project upon completion. Following the conventions of code

repository-based SE, it is good practice to discourage all other users from

modifying their version of the files checked-out for private use during this

period.

All CSE tools have the potential to implement a private work mode,

where the changes of others are prevented from being propagated to the tools

of private developers. Unfortunately, such a tool mode has the potential to

attract merge conflicts upon code integration with the main CSE project, and

draws away from the ideals of collaborative work. Therefore, modes of private

work within the Caise framework and associated tools are discouraged, but

are trivial to implement if the group culture requires it.

8.2 Large Software Projects

The Caise framework is best suited to a small group of developers who wish

to work collaboratively and in close contact on an entire software project.

For the development of projects where large numbers of people are working

203

www.manaraa.com

on many artifacts, there are no theoretical, technical or practical reasons why

the Caise framework can not be used, as long as a structured approach to

software development is taken.

It is unlikely that in a well-planned software development project, nu-

merous people will work on the same set of heavily related files [16, 51].

Developers will usually work within separate areas of code, especially when

the number of developers is large and several tasks can be performed con-

currently. In these settings, the Caise framework and associated tools are

expected to work well.

In the case, however, of large open source development projects, where

coding efforts are not necessarily planned and coordinated in advance, and

heavy moderation takes place, the Caise framework is not as well suited. The

support of large development teams is a challenging aspect for all research

towards CSE tools and technologies.

8.2.1 Tailoring Feedback

As discussed in Section 7.4.4, feedback information will become the domi-

nant feature of Caise-based tools when numbers of concurrent users become

large. To this end, it will become viable to introduce several mechanisms

which tailor feedback per user. Failure to control the amount of feedback

information generated and displayed may cause information overload for end

users, and important feedback information may risk being ignored if it gen-

erated too frequently during development tasks that require a significant

amount of concentration.

Two initial approaches to tailoring feedback can be easily made within

the current version of the Caise framework and associated tools. Firstly,

feedback plugins within the Caise framework could allow the registration of

user-configured filters, allowing feedback information to be generated only

for the types of feedback that each end user is interested in. Examples of

semantic model feedback information that could be explicitly requested by

end users include subclass/superclass connection, method callee/caller con-

nection, and type declaration/association. Secondly, graphical sliders could

dynamically configure the degree of interest within each running instance of

204

www.manaraa.com

a CSE tool. A slider can simply filter feedback events at the client side of the

framework, only displaying feedback events that are beyond a given severity.

8.3 Areas of Enhancement

The Caise framework has been designed to assist developers collaborate dur-

ing everyday SE tasks. While the Caise framework has several advantages

over conventional tools, and provides a strong proof-of-concept for the sup-

port of real time CSE, there are aspects of it that could be further enhanced.

These aspects are not critical to the success of the Caise approach, but may

require addressing for any commercial implementation.

8.3.1 CSCW Floor Control Policies

The Caise framework supports the lowest common denominator for all CSE

tasks—unobstructed access to a shared set of artifacts and an underlying

semantic model. Caise provides ‘free for all’ floor control with support for

the Mêlée, Action/Reaction, Follow the Leader, Working Together, and In-

dependent modes of development, as presented in Section 3.4.2. Changes can

be made without moderation or restriction—it is intended that the aware-

ness mechanisms of Caise-based tools and prevailing social protocols are

adequate to prevent concurrent modification difficulties between users.

In some development scenarios, it may be desirable to restrict the levels

of concurrent access, reducing the possibility of conflicting actions between

developers. The design of floor control mechanisms to restrict access within

collaborative applications is a difficult topic [116] that others are working

on [101]. As determining the appropriate levels of floor control within soft-

ware development teams is an open question, no restrictions on floor control

have been implemented within the Caise framework to date.

Floor Control Policies for Commercial Tools

The de-facto standard at present for floor control within commercial CSE ap-

plications appears to be token-passing, as evident in Borland’s JBuilder [12]

and Sun’s JSE [115] IDEs. While token passing ensures that only one de-

veloper at a time can modify the system, it may be overly-restrictive—floor

205

www.manaraa.com

control mechanisms must suit the type of work being done and the SE pro-

cesses that the development group follow. Floor control clearly is an area for

future investigation.

Support for Model Locking

As discussed in Section 2.5.2, the Poseidon collaborative UML editor allows

parts of the semantic model to be locked by users during times of concurrent

development. Instead of using a token passing system to restrict concurrent

access across the entire project, users may select specific areas of the model

they wish to develop, which will lock all other developers out until the lock is

yielded. This approach may also be incorporated with the Caise framework,

where the server supports locking of model components, and tools disable

regions of code and diagrams that are currently marked as read-only.

Implementing Floor Control Policies and Model Locking

While specific behaviour for a software methodology can be built into CSE

tools without having to alter the structure of the Caise server, industrial-

strength implementations of Caise-based tools may require global floor con-

trol policies and semantic model locking mechanisms. In this case, it is pos-

sible to extend the Caise framework to enforce CSCW floor control policies,

providing mechanisms for all Caise-based tools.

Such floor control policies and semantic model-locking facilities could eas-

ily be implemented by a new ‘security manager’ plug-in, where the server

checks the plug-in for write access on a per-user basis before allowing a mod-

ification request to be processed. The concept of server-based floor control

policies is well suited to the design of the framework’s event model. Only

valid modification requests are processed as normal within the server; all

unauthorised requests are rejected with appropriate tool notification events.

8.3.2 Atomic Operations versus Refactoring

The Caise server does not currently handle high-level modification opera-

tions such as refactoring. At present, however, it is still possible to create

tools that support refactoring by directly manipulating the semantic model,

206

www.manaraa.com

or by inspecting the semantic model and then issuing a sequence of arti-

fact modification events. While the Caise server will not currently identify

such a sequence of events as a refactoring event, it is possible to write a

server application to identify potential refactoring events, and even perform

refactoring, if required.

Summary

In this chapter, various possibilities to extend the Caise framework have

been presented, allowing the framework to be applicable for a wider range of

developers and SE methodologies. Open problems within the Caise frame-

work have also been discussed.

In Chapter 9, final conclusions about the Caise framework and partici-

pating tools are made, including future work.

207

www.manaraa.com

Chapter IX

Conclusions and Future Work

In Section 9.1, final conclusions for the Caise framework and associated

tools are made. In Section 9.2, future work is outlined.

9.1 Conclusions

Real time support for CSE is an important emerging field of research. The

size and complexity of today’s software projects far exceeds the ability of

conventional single-user tools to provide much-needed environments for fine-

grained collaboration between developers.

Source code repository systems provide some control over constantly

evolving software. There is both the demand and enabling technology, how-

ever, for more comprehensive tool support. CSE tools that operate within a

shared semantic model of software and receive project updates in real time

have the potential to raise the level of communication, cooperation and co-

ordination between developers, improving the SE process.

Current approaches to supporting CSE have inherent limitations, includ-

ing overly-restrictive floor control policies, reduced tool functionality, high

implementation costs and an inability to scale or extend. The Caise frame-

work has been designed to address these problems, with a particular focus

on small, well-coordinated development groups.

I have proposed a new approach of shared semantic modelling for the sup-

port of CSE. This approach has been embodied within the Caise framework,

where different types of powerful and previously unobtainable CSE tools can

collaborate in real time upon a shared set of artifacts. The construction and

operation of several Caise-based tools has been demonstrated in detail.

Evaluations have shown these new types of CSE tools to be useful to small

208

www.manaraa.com

teams of software engineers within common development scenarios. Subjec-

tive and heuristic evaluations also provide evidence that Caise represents

a highly-viable approach for the future progression of computer-supported

CSE.

In this thesis, my contributions include:

• Illustrating the need for more comprehensive tool support within SE

• Introducing and classifying candidate patterns of collaboration within

SE

• Describing the Caise approach to supporting CSE, where different

types of tools facilitate synchronous collaboration upon a shared se-

mantic model within small groups of developers. The approach of a

central server, a shared semantic model of software, a tool protocol

and propagating atomic events is new to the field of research, and the

infrastructure has been presented in sufficient detail to be replicated

• Demonstrating that the Caise framework is suitable for the construc-

tion and support of such CSE tools

• Demonstrating new types of tractable semantic model-based tools that

support various patterns of CSE

• Presenting candidate heuristics for evaluating CSE tools

• Presenting user evaluations where CSE tools give substantial objective

and subjective improvements over conventional SE approaches. This is

the first formal evaluation, to my knowledge, of task completion rates

and subjective measures for synchronous CSE tools

9.2 Future Work

The basic framework and example tools for Caise have been constructed

and evaluated. Further research can now focus on improving the framework

and investigating Caise-based CSE in more detail.

209

www.manaraa.com

9.2.1 Areas of Investigation

Aside from addressing the open problems discussed in Section 8.3, several

avenues for future work within the Caise research project exist.

Abstraction of Caise into a General CSE Framework The Caise pro-

totype has proved useful for determining the capabilities and limitations

of a framework-based approach to supporting CSE. The key compo-

nents and interfaces of the framework can potentially be abstracted,

allowing different vendors to implement collaborative frameworks and

tools that can integrate globally.

User Awareness Mechanisms Determining appropriate types of aware-

ness mechanisms for collaborative user activity is another challenging

problem related to the Caise framework and participating tools. Other

research projects such as Maui [55] and GroupKit [95] are currently

addressing awareness mechanisms for general CSCW, but awareness

mechanisms specific to CSE have so far received little attention. De-

termining the appropriate volumes of feedback information within CSE

tools will also be of significant value to the field of research.

Software Development Visualisations The visualisations presented in

Section 7.2 contain considerable amounts of useful information, al-

though they are still relatively simple. A range of more sophisticated

visualisations may be developed. Candidate visualisation techniques

include the use of colour and other metaphors to indicate user activ-

ity attributes. Such attributes may include the current rate of change

within a project and the previous locations of developer activity within

a set of artifacts.

Code Analysis Analysis of software within the Caise framework is per-

formed statically. It is of interest to also consider the run-time be-

haviour of source code when addressing software design. For example,

profiling of method calls can indicate methods that should be declared

in-line. The Caise server could be expanded to incorporate dynamic

code analysis, with feedback to Caise-based tools.

210

www.manaraa.com

9.2.2 Future Evaluations

Evaluations of Caise-based tools presented in this thesis provide evidence

that for concentrated tasks between small groups of users, the Caise ap-

proach is suitable. An important further step for the progression of CSE is

to investigate how developers interact with each other and CSE tools given

more complex and open-ended sets of development tasks. Aspects to be con-

sidered include the frequency of communication and reactions to Caise-based

feedback.

Longitudinal Studies

SE tasks typically take days or weeks to complete. An investigation into

the fine-grained actions of participants during collaborative tasks over short

periods of development has been conducted [29], but a more thorough exami-

nation is warranted. Given the Caise framework’s event logging capabilities,

a longitudinal study of collaborative development behaviour will be of con-

siderable value. Aspects to consider include bug counts, design aspects and

frequency of compilation attempts.

Comparisons to Other Tools

Another interesting evaluation would be the comparison of existing user eval-

uation results with other broadly comparable tools such as Moomba [92] and

Borland’s JBuilder [12].

Summary

The anecdotal, heuristic and empirical evaluations presented in this thesis

provide strong evidence that the Caise framework is a suitable approach for

supporting CSE. Through the Caise framework, it is possible and practical

to extend the range of tools that support synchronous collaboration facilities.

It is envisaged that new aspects of collaborative work within SE can now be

explored, allowing the perceived benefits of CSE to be fully realised. I look

forward to investigating CSE further, including observation of changes in

software development given tools that are more collaboration-aware.

211

www.manaraa.com

Publications

A listing of all papers related to the work presented in this thesis is given
here. Copies of each paper are available from the accompanying resources
disc.

Core Articles

The following articles have been published in refereed international confer-
ences. The papers are focused upon original material within this thesis.

APSEC’03

Cook and Churcher, An Extensible Framework for Collaborative Software
Engineering, in Proceedings of the Tenth Asia-Pacific Conference on Software
Engineering, Chang Mai, Thailand, December 2003 [28].

Summary: A description of the initial Caise architecture and example CSE
tools.

APSEC’04

Cook, Churcher, and Irwin, Towards Synchronous Collaborative Software
Engineering, in Proceedings of the Eleventh Asia-Pacific Conference on Soft-
ware Engineering, Busan, Korea, December 2004 [31].

Summary: An updated description of the Caise architecture, with demon-
stration of a commercial IDE operating as a Caise-based tool.

ACSC’05

Cook and Churcher, Modelling and Measuring Collaborative Software En-
gineering, in Proceedings of the Twenty-Eighth Australasian Conference on
Computer Science, Newcastle, Australia, January 2005 [29].

Summary: A discussion of modelling user activity within the Caise frame-
work, and the introduction of heuristic evaluations for CSE tools.

Voted as one of the best papers for ACSC2005, and nominated as an invited
publication for the Journal of Research and Practice in Information Theory.

212

www.manaraa.com

APSEC’05

Cook, Churcher, and Irwin, A User Evaluation of Synchronous Collabora-
tive Software Engineering Tools, in Proceedings of the Twelfth Asia-Pacific
Conference on Software Engineering, Taipei, Taiwan, December 2005 [32].

Summary: A description of the CSE tool user evaluation.

ACSC’06

Cook and Churcher, Constructing Real-Time Collaborative Software Engi-
neering Tools Using Caise, an Architecture for Supporting Tool Develop-
ment, in Proceedings of the Twenty-Ninth Australasian Conference on Com-
puter Science, Tasmania, Australia, January 2006 [30].

Summary: A discussion of tool construction within the Caise framework.

Related Articles

The following articles are based partially on material from this thesis.

ASWEC’05

Irwin, Cook, and Churcher, Parsing and Semantic Modelling for Software En-
gineering Applications, in Proceedings of the Nineteenth Australian Software
Engineering Conference, Queensland, Australia, March 2005 [61].

Summary: This paper describes the semantic analysis of Java source code
using the yacc-yacc parser and JST semantic modelling tool. To illustrate
the use of the JST semantic modelling tool, this paper discusses the use of
JST within the Caise framework.

Work in Progress

JRPIT

A full version of the ACSC’05 paper [29] is being prepared as an invited
paper for the Journal of Research and Practice in Information Technology.
This paper is due for submission in March 2006.

Unpublished Articles

The following articles have been published as technical reports within the
Computer Science Department, University of Canterbury.

213

www.manaraa.com

Annotated Bibliography

Cook, Collaborative Software Engineering: An Annotated Bibliography, in
Technical Report TR-COSC 02/04, Department of Computer Science and
Software Engineering, University of Canterbury, New Zealand, June 2004 [26].

Summary: This is an annotated collection of papers that have proved relevant
during the course of the research into the Caise framework.

The Caise Messaging Framework

Cook and Churcher, A Pure-Java Group Communication Framework, in
Technical Report TR-COSC 02/03, Department of Computer Science and
Software Engineering, University of Canterbury, New Zealand, July 2003 [27].

Summary: This paper describes the Caise messaging framework, which can
be used to provide asynchronous messaging between any set of Java applica-
tions. As the messaging framework is decoupled from the remainder of the
Caise framework, this paper provides a user manual for programmers wish-
ing to develop generic collaborative applications independent of the Caise
framework.

214

www.manaraa.com

Bibliography

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Princi-
ples Techniques and Tools. Addison Wesley, Reading, MA, 1988. ISBN
0-201-10194-7.

[2] C. Alexander. The Timeless Way of Building. Oxford University Press,
1979.

[3] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-
King, and S. Angel. A Pattern Language: Towns, Buildings, Con-
struction. Oxford University Press, 1977.

[4] K. Baker, S. Greenberg, and C. Gutwin. Heuristic Evaluation of Group-
ware Based on the Mechanics of Collaboration. In M.R. Little and
L. Nigay, editors, Proceedings of Engineering for Human-Computer In-
teraction, volume 2254 of Lecture Notes in Computer Science, pages
123–139, Toronto, Canada, May 2001. Springer-Verlag.

[5] Kevin Baker, Saul Greenberg, and Carl Gutwin. Empirical Develop-
ment of a Heuristic Evaluation Methodology for Shared Workspace
Groupware. In Proceedings of the 2002 ACM Conference on Computer
Supported Cooperative Work, pages 96–105. ACM Press, 2002. ISBN
1-58113-560-2. doi: http://doi.acm.org/10.1145/587078.587093.

[6] Sergio Bandinelli, Elisabetta Di Nitto, and Alfonso Fuggetta. Support-
ing Cooperation in the SPADE-1 Environment. IEEE Transactions
on Software Engineering, 22(12):841–865, 1996. ISSN 0098-5589. doi:
http://dx.doi.org/10.1109/32.553634.

[7] Kent Beck. Extreme Programming Explained: Embrace Change.
Addison-Wesley, Reading, MA, 1st edition, October 1999.

[8] James Begole, John C. Tang, and Rosco Hill. Rhythm Modeling, Vi-
sualizations and Applications. In Proceedings of the 16th annual ACM
symposium on User interface software and technology, pages 11–20.
ACM Press, 2003. ISBN 1-58113-636-6. doi: http://doi.acm.org/10.
1145/964696.964698.

215

www.manaraa.com

[9] Brian Berliner. CVS II: Parallelizing Software Development. In Pro-
ceedings of the USENIX Winter 1990 Technical Conference, pages 341–
352, Berkeley, CA, 1990. USENIX Association.

[10] BitKeeper User Documentation. BitMover Incorporated, September
2005. URL www.bitkeeper.com/UG.

[11] Marko Boger, Thorsten Sturm, Erich Schildhauer, and Elizabeth Gra-
ham. Poseidon for UML User Guide. Gentleware AG, 2002. URL
www.gentleware.com.

[12] What’s New In Borland JBuilder 2005. Borland Software Corporation,
September 2004. URL www.borland.com/us/products/jbuilder.

[13] Gerard Boudier, Ferdinando Gallo, Regis Minot, and Ian Thomas.
An overview of PCTE and PCTE+. In SDE 3: Proceedings of
the third ACM SIGSOFT/SIGPLAN software engineering symposium
on Practical software development environments, pages 248–257, New
York, NY, USA, 1988. ACM Press. ISBN 0-89791-290-X. doi: http:
//doi.acm.org/10.1145/64135.65026.

[14] Lionel C. Briand, Christian Bunse, and John W. Daly. A Controlled
Experiment for Evaluating Quality Guidelines on the Maintainability of
Object-Oriented Designs. IEEE Transactions on Software Engineering,
27(6):513–530, 2001. ISSN 0098-5589. doi: http://dx.doi.org/10.1109/
32.926174.

[15] Felix C. Brodbeck. Communication and Performance in Software De-
velopment Projects. European Journal of Work and Organizational
Psychology, 10(1):73–94, March 2001.

[16] Frederick P Brooks Jr. The Mythical Man Month: Essays on Software
Engineering. Addison-Wesley, 2nd edition, 1995. ISBN 0-201-83595.

[17] W.J. Brown, R.C. Malveau, H.W. McCormick III, and T.J. Mowbray.
AntiPatterns: Refactoring Software, Architectures and Projects in Cri-
sis. John Wiley & Sons, 1998.

[18] Rich Burridge. Java Shared Data Toolkit User Guide. Sun Mi-
crosystems, Inc., October 1999. URL java.sun.com/products/

java-media/jsdt.

216

www.bitkeeper.com/UG
www.gentleware.com
www.borland.com/us/products/jbuilder
java.sun.com/products/java-media/jsdt
java.sun.com/products/java-media/jsdt

www.manaraa.com

[19] R. P. Carasik and C. E. Grantham. A Case Study of CSCW in a
Dispersed Organization. In CHI ’88: Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, pages 61–66, New
York, NY, USA, 1988. ACM Press. ISBN 0-201-14237-6.

[20] David Chappell. Understanding .NET. Independent Technology
Guides. Addison Wesley, 1st edition, May 2002.

[21] Li-Te Cheng, Susanne Hupfer, Steven Ross, and John Patterson. Jazz:
A Collaborative Application Development Environment. In Proceedings
of the 18th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages 102–103,
Anaheim, California, USA, October 2003. ACM Press.

[22] Neville Churcher and Carl Cerecke. GroupCRC: Exploring CSCW Sup-
port for Software Engineering. In Proceedings of the 4th Australasian
Conference on Computer-Human Interaction, Hamilton, New Zealand,
November 1996. IEEE Computer Society Press.

[23] Neville Churcher, Warwick Irwin, and Carl Cook. Inhomogeneous
Force-Directed Layout Algorithms in the Visualisation Pipeline: From
Layouts to Visualisations. In Australasian Symposium on Information
Visualisation, (invis.au’04), volume 35 of Conferences in Research and
Practice in Information Technology, pages 43–51, Christchurch, New
Zealand, 2004. ACS.

[24] Alistair Cockburn. Agile Software Development. Addison-Wesley, 1st
edition, December 2001.

[25] Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato.
Version Control with Subversion. O’Reilly Media, 1st edition, June
2004. URL http://svnbook.red-bean.com/en/1.0/svn-book.pdf.

[26] Carl Cook. Collaborative Software Engineering: An Annotated Bib-
liography. Technical Report TR-COSC 02/04, Department of Com-
puter Science and Software Engineering, University of Canterbury,
Christchurch, New Zealand, June 2004. Work in Progress.

[27] Carl Cook and Neville Churcher. A Pure-Java Group Communica-
tion Framework. Technical Report TR-COSC 02/03, Department of
Computer Science and Software Engineering, University of Canterbury,
Christchurch, New Zealand, July 2003.

217

http://svnbook.red-bean.com/en/1.0/svn-book.pdf

www.manaraa.com

[28] Carl Cook and Neville Churcher. An Extensible Framework for Col-
laborative Software Engineering. In Deeber Azada, editor, Proceedings
of the Tenth Asia-Pacific Software Engineering Conference, pages 290–
299, Chiang Mai, Thailand, December 2003. IEEE Computer Society.

[29] Carl Cook and Neville Churcher. Modelling and Measuring Collabo-
rative Software Engineering. In Vladimir Estivill-Castro, editor, Pro-
ceedings of ACSC2005: Twenty-Eighth Australasian Computer Science
Conference, volume 38 of Conferences in Research and Practice in In-
formation Technology, pages 267–277, Newcastle, Australia, January
2005. ACS.

[30] Carl Cook and Neville Churcher. Constructing Real-Time Collabo-
rative Software Engineering Tools Using CAISE, an Architecture for
Supporting Tool Development. In Vladimir Estivill-Castro and Gill
Dobbie, editors, Proceedings of ACSC2006: Twenty-Ninth Australasian
Computer Science Conference, volume 39 of Conferences in Research
and Practice in Information Technology, Tasmania, Australia, January
2006. ACS.

[31] Carl Cook, Neville Churcher, and Warwick Irwin. Towards Syn-
chronous Collaborative Software Engineering. In Proceedings of the
Eleventh Asia-Pacific Software Engineering Conference, pages 230–
239, Busan, Korea, December 2004. IEEE Computer Society.

[32] Carl Cook, Neville Churcher, and Warwick Irwin. A User Evaluation of
Synchronous Collaborative Software Engineering Tools. In Proceedings
of the Twelfth Asia-Pacific Software Engineering Conference, pages
230–239, Taipei, Taiwan, December 2005. IEEE Computer Society.

[33] Donald Cox and Saul Greenberg. Supporting Collaborative Interpreta-
tion in Distributed Groupware. In Proceedings of the ACM Conference
on Computer Supported Cooperative Work, pages 289–298, Philadel-
phia, PA, December 2000. ACM Press.

[34] Bill Curtis, Herb Krasner, and Neil Iscoe. A Field Study of the Software
Design Process for Large Systems. Communications of the ACM, 31
(11):1268–1287, 1988. ISSN 0001-0782. doi: http://doi.acm.org/10.
1145/50087.50089.

[35] Edsger W. Dijkstra. The Humble Programmer. Communications of
the ACM, 15(10):859–866, 1972. ISSN 0001-0782.

218

www.manaraa.com

[36] Stephen G. Eick, Joseph L. Steffen, and Jr. Eric E. Sumner. Seesoft—A
Tool for Visualizing Line Oriented Software Statistics. IEEE Transac-
tions on Software Engineering, 18(11):957–968, 1992. ISSN 0098-5589.
doi: http://dx.doi.org/10.1109/32.177365.

[37] Jacky Estublier. The Adele Configuration Manager. John Wiley &
Sons, Inc., New York, NY, USA, 1995. ISBN 0-471-94245-6.

[38] Marin Fowler. UML Distilled: A Brief Guide To The Standard Ob-
ject Modeling Language. Object Technology Series. Addison Wesley,
Reading, MA, 3rd edition, 2004.

[39] Martin Fowler. CruiseControl: Continuous Integration Toolkit.
ThoughtWorks Incorporated, November 2005. URL cruisecontrol.

sourceforge.net/overview.html.

[40] Martin Fowler and Matthew Foemmel. Continuous Integration.
ThoughtWorks, Inc., October 2005. URL www.martinfowler.com/

articles.

[41] Jon Froehlich and Paul Dourish. Unifying Artifacts and Activities in
a Visual Tool for Distributed Software Development Teams. In 6th
International Conference on Software Engineering (ICSE’04), pages
387–396, Edinburgh, Scotland, United Kingdom, May 2004. IEEE.

[42] G.W. Furnas. Generalised Fisheye Views. In Proc ACM SIGCHI ’86
Conference on Human Factors in Computing Systems, pages 16–23,
1986.

[43] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[44] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns : Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional Computing Series. Addison Wesley, 1995.
ISBN 0201633612.

[45] Emden R Gansner and Stephen C North. An Open Graph Visualiza-
tion System and its Applications to Software Engineering. Software—
Practice and Experience, 30(11):1203–1233, September 1999.

219

cruisecontrol.sourceforge.net/overview.html
cruisecontrol.sourceforge.net/overview.html
www.martinfowler.com/articles
www.martinfowler.com/articles

www.manaraa.com

[46] Christopher Garrett. Software Modeling Introduction: What Do You
Need from a Modeling Tool? Borland Software Corporation, May 2003.
White Paper.

[47] James Gosling, Bill Joy, and Guy Steele. Java Language Specifi-
cation, chapter 18.1. The Java Series. Prentice Hall, 2nd edition,
2000. URL java.sun.com/docs/books/jls/second_edition/html/

syntax.doc.html#44467.

[48] Nicholas Graham, Hugh Stewart, Authur Ryman, Reza Kopaee, and
Rittu Rasouli. A World-Wide-Web Architecture for Collaborative Soft-
ware Design. In Software Technology and Engineering Practice, pages
22–32, Pittsburgh, Pennsylvania, August 1999. IEEE.

[49] Saul Greenberg. The 1988 Conference on Computer-Supported Co-
operative Work: Trip Report. In SIGCHI Bulletin, volume 20 of 5,
pages 49–55. ACM, July 1989. Also published in Canadian Artificial
Intelligence, 19, April 1989.

[50] Jonathan Grudin. Why CSCW Applications Fail: Problems in the
Design and Evaluation of Organizational Interfaces. In D. Marca and
G. Bock, editors, Groupware: Software for Computer-Supported Coop-
erative Work, pages 552–560. IEEE Press, Los Alamitos, CA, 1992.

[51] Carl Gutwin, Reagan Penner, and Kevin Schneider. Group Awareness
in Distributed Software Development. In CSCW ’04: Proceedings of
the 2004 ACM Conference on Computer Supported Cooperative Work,
pages 72–81, New York, NY, USA, 2004. ACM Press. ISBN 1-58113-
810-5. doi: http://doi.acm.org/10.1145/1031607.1031621.

[52] S. G. Hart and L.E. Staveland. Development of NASA-TLX (Task
Load Index): Results of Empirical and Theoretical Research. In P.A.
Hancock and N. Meshkati, editors, Human Mental Workload, pages
139–183. Elsevier Science, 1998.

[53] Andrew S. Hatch, Michael P. Smith, Christopher M.B. Taylor, and
Malcolm Munro. No Silver Bullet for Software Visualisation Evalua-
tion. In International Conference on Imaging Science, Systems, and
Technology (CISST), Nevada, USA, June 2001. Computer Science Re-
search, Education, and Applications Press.

[54] C. Helberg. Pitfalls of Data Analysis (or how to avoid lies and damned
lies). In Third International Applied Statistics in Industry Conference,

220

java.sun.com/docs/books/jls/second_edition/html/syntax.doc.html#44467
java.sun.com/docs/books/jls/second_edition/html/syntax.doc.html#44467

www.manaraa.com

Dallas, Texas, U.S.A.,, June 1995. URL my.execpc.com/~helberg/

pitfalls.

[55] Jason Hill and Carl Gutwin. Awareness Support in a Groupware Wid-
get Toolkit. In Proceedings of the International ACM SIGGROUP
Conference on Supporting Group Work, pages 256–267, Sanibel Island,
Florida, USA, November 2003. ACM Press.

[56] William C. Hill, James D. Hollan, Dave Wroblewski, and Tim Mc-
Candless. Edit Wear and Read Wear. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 3–9,
New York, NY, USA, 1992. ACM Press. ISBN 0-89791-513-5. doi:
http://doi.acm.org/10.1145/142750.142751.

[57] Scott E. Hudson. LALR Parser Generator for Java. Visualization and
Usability Center, Georgia Institute of Technology, Atlanta, GA, July
1999. URL www.princeton.edu/appel/modern/java/CUP.

[58] Warwick Irwin. Understanding and Improving Object Oriented Soft-
ware through Static Analysis. PhD thesis, University of Canterbury,
Christchurch, New Zealand, January 2006. Work in Progress.

[59] Warwick Irwin and Neville Churcher. XML in the Visualisation
Pipeline. In David Dagan Feng, Jesse Jin, Peter Eades, and Hong Yan,
editors, Visualisation 2001, volume 11 of Conferences in Research and
Practice in Information Technology, pages 59–68, Sydney, Australia,
April 2002. ACS. Selected papers from 2001 Pan-Sydney Workshop on
Visual Information Processing.

[60] Warwick Irwin and Neville Churcher. Object Oriented Metrics: Preci-
sion Tools and Configurable Visualisations. In 9th International Soft-
ware Metrics Symposium, Sydney, Australia, September 2003.

[61] Warwick Irwin, Carl Cook, and Neville Churcher. Parsing and Seman-
tic Modelling for Software Engineering Applications. In Proceedings
of ASWEC2005: Nineteenth Australian Software Engineering Confer-
ence, Queensland, Australia, March 2005.

[62] Ivar Jacobson, Grady Booch, and James Rumbaugh. The Unified Soft-
ware Development Process. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1999. ISBN 0-201-57169-2.

221

my.execpc.com/~helberg/pitfalls
my.execpc.com/~helberg/pitfalls
www.princeton.edu/appel/modern/java/CUP

www.manaraa.com

[63] James O. Coplien and Neil Harrison. Organizational Patterns of Agile
Software Development. Pearson Prentice Hall, 2005. ISBN 0131467409.

[64] Brian Johnson and Ben Shneiderman. Tree-Maps: A Space-Filling Ap-
proach to the Visualization of Hierarchical Information Structures. In
G.M. Nielson and L. Rosenblum, editors, Proceedings of Visualisation
’91, pages 284–291, Los Alamitos, CA, October 1991. IEEE Computer
Society Press.

[65] Jim Keogh. J2EE: The Complete Reference. McGraw Hill/Osborne,
California, USA, 1st edition, 2002.

[66] Scott Lewis. Eclipse Communication Framework. Eclipse Foundation,
April 2005. URL www.eclipse.org/ecf/goals.html.

[67] Adrian Mackenzie and Simon Monk. From Cards to Code: How
Extreme Programming Re-Embodies Programming as a Collective
Practice. Computer Supported Cooperative Work, 13(1):91–117, 2004.
ISSN 0925-9724. doi: http://dx.doi.org/10.1023/B:COSU.0000014873.
27735.10.

[68] David Martin and Ian Sommerville. Patterns of cooperative interac-
tion: Linking ethnomethodology and design. ACM Transactions on
Computer-Human Interaction, 11(1):59–89, 2004. ISSN 1073-0516. doi:
http://doi.acm.org/10.1145/972648.972651.

[69] Steve McConnell. Code Complete. Microsoft Press, Redmond, Wash-
ington, 2nd edition, 2004.

[70] T. Mens. A State-of-the-Art Survey on Software Merging. In Transac-
tions on Software Engineering, volume 28 of 5, pages 449–462. IEEE,
May 2002.

[71] Windows SharePoint Services Overview. Microsoft Corporation,
November 2005. URL www.microsoft.com/windowsserver2003/

techinfo/sharepoint/overview.mspx.

[72] Visual Studio Developer Center. Microsoft Corporation, March 2007.
URL msdn2.microsoft.com/en-gb/vstudio.

[73] Visual Studio Team System. Microsoft Corporation, March 2007. URL
msdn2.microsoft.com/en-gb/teamsystem.

222

www.eclipse.org/ecf/goals.html
www.microsoft.com/windowsserver2003/techinfo/sharepoint/overview.mspx
www.microsoft.com/windowsserver2003/techinfo/sharepoint/overview.mspx
msdn2.microsoft.com/en-gb/vstudio
msdn2.microsoft.com/en-gb/teamsystem

www.manaraa.com

[74] Nilo Mitra. SOAP Version 1.2 Part 0: Primer. Technical report, W3C
Consortium, June 2003. URL www.w3.org/TR/soap12-part0.

[75] David S. Moore and George P. McCabe. Introduction to the Practice of
Statistics. W H Freeman and Company, New York, 2nd edition, 1993.
ISBN 0-7167-2250-X.

[76] Bugzilla. The Mozilla Organization, March 2007. URL www.bugzilla.

org/docs.

[77] Bonnie A. Nardi and James R. Miller. An Ethnographic Study of Dis-
tributed Problem Solving in Spreadsheet Development. In Proceedings
of the Conference on Computer Supported Cooperative Work, pages 197
– 208, Los Angeles, CA, October 1990. ACM.

[78] P. Naur and B. Randell, editors. Software Engineering: Report of a
conference sponsored by the NATO Science Committee, Garmish, Ger-
many, October 1968. NATO Science Committee.

[79] Blair Neate. An Object Oriented Semantic Model for .Net. Honours Re-
port 06/05, Department of Computer Science and Software Engineer-
ing, University of Canterbury, Christchurch, New Zealand, November
2005.

[80] Jakob Nielsen. Finding Usability Problems Through Heuristic Evalua-
tion. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 373–380. ACM Press, 1992. ISBN 0-89791-
513-5. doi: http://doi.acm.org/10.1145/142750.142834.

[81] Jakob Nielsen and Thomas K. Landauer. A Mathematical Model of the
Finding of Usability Problems. In Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems, pages 206–213. ACM
Press, 1993. ISBN 0-89791-575-5. doi: http://doi.acm.org/10.1145/
169059.169166.

[82] Jakob Nielsen and Rolf Molich. Heuristic Evaluation of User Interfaces.
In Proceedings of the SIGCHI conference on Human factors in comput-
ing systems, pages 249–256. ACM Press, 1990. ISBN 0-201-50932-6.
doi: http://doi.acm.org/10.1145/97243.97281.

[83] Eclipse Platform Technical Overview Version 2.1. Object Technology
International Incorporated, February 2003. URL www.eclipse.org/

articles.

223

www.w3.org/TR/soap12-part0
www.bugzilla.org/docs
www.bugzilla.org/docs
www.eclipse.org/articles
www.eclipse.org/articles

www.manaraa.com

[84] SourceForge.net Home Page. Open Source Technology Group, July
2003. URL www.sourceforge.net.

[85] Martin Ott, Martin Pittenauer, and Dominik Wagner. SubEthaEdit.
The Coding Monkeys, July 2005. URL www.codingmonkeys.de/

subethaedit/collaborate.html. Website Article.

[86] D.E. Perry, N.A. Staudenmayer, and L.G. Votta. People, Organiza-
tions, and Process Improvement. In Software Magazine, volume 11,
pages 36–45. IEEE, 4th edition, July 1994.

[87] Dewayne E. Perry, Harvey P. Siy, and Lawrence G. Votta. Parallel
Changes in Large-Scale Software Development: an Observational Case
Study. ACM Transactions on Software Engineering Methodology, 10
(3):308–337, 2001. ISSN 1049-331X. doi: http://doi.acm.org/10.1145/
383876.383878.

[88] David Pinelle and Carl Gutwin. Groupware Walkthrough: Adding Con-
text to Groupware Usability Evaluation. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 455–462.
ACM Press, 2002. ISBN 1-58113-453-3. doi: http://doi.acm.org/10.
1145/503376.503458.

[89] David Pinelle, Carl Gutwin, and Saul Greenberg. Task analysis for
groupware usability evaluation: Modeling shared-workspace tasks with
the mechanics of collaboration. ACM Transactions on Computer-
Human Interaction, 10(4):281–311, 2003. ISSN 1073-0516. doi: http:
//doi.acm.org/10.1145/966930.966932.

[90] Atul Prakash and Michael J. Knister. Undoing Actions in Collaborative
Work. In Marilyn Mantel and Ron Baecker, editors, Proceedings of the
1992 ACM conference on Computer-supported cooperative work, pages
273–280, Toronto, Canada, November 1992. Acm Sigchi Siggroup,
Acm Press, New York.

[91] Eric S. Raymond, editor. The Cathedral and the Bazaar. O’Reilly,
1999. ISBN 1-56592-724-9.

[92] Michael Reeves and Jihan Zhu. Moomba A Collaborative Environment
for Supporting Distributed Extreme Programming in Global Software
Development. In Jutta Eckstein and Hubert Baumeister, editors, Lec-
ture Notes in Computer Science, volume 3092, pages 38–50. Springer-
Verlag, January 2004.

224

www.sourceforge.net
www.codingmonkeys.de/subethaedit/collaborate.html
www.codingmonkeys.de/subethaedit/collaborate.html

www.manaraa.com

[93] R. Reichwald, K. Moeslein, H. Sachenbacher, H. Englberger, and
S. Oldenburg. Telecooperation – Distributed Work and Organisational
Forms. Springer-Verlag, Berlin, 1998. German Text.

[94] Steven P. Reiss. The FIELD Programming Environment: A Friendly
Integrated Environment for Learning and Development. Kluwer Aca-
demic Publishers, Norwell, MA, USA, 1995. ISBN 0792395379.

[95] Mark Roseman and Saul Greenberg. Building Real Time Group-
ware with GroupKit, A Groupware Toolkit. ACM Transactions on
Computer-Human Interaction, 3(1):66–106, March 1996.

[96] W. W. Royce. Managing the Development of Large Software Systems:
Concepts and Techniques. In ICSE ’87: Proceedings of the 9th In-
ternational Conference on Software Engineering, pages 328–338, Los
Alamitos, CA, USA, 1987. IEEE Computer Society Press. ISBN 0-
89791-216-0.

[97] M. Sarkar and M.H. Brown. Graphical Fisheye Views. Communications
of the ACM, 37(12):73–84, December 1994.

[98] Anita Sarma and André van der Hoek. Palant́ır: Coordinating Dis-
tributed Workspaces. In 26th Annual International Computer Software
and Applications Conference, Oxford, England, August 2002. IEEE.

[99] Anita Sarma and André van der Hoek. A Conflict Detected Earlier is a
Conflict Resolved Earlier. In Collaboration, Conflict, and Control : The
Proceedings of the 4th Workshop on Open Source Software Engineering,
pages 82–86, Edinburgh, United Kingdom, May 2004.

[100] Till Schümmer. Lost and Found in Software Space. In 34th Annual
Hawaii International Conference on System Sciences, Maui, Hawaii,
January 2001. IEEE Computer Society.

[101] Till Schümmer. Patterns For Groupware. Groupware Patterns Com-
munity, October 2005. URL www.groupware-patterns.org.

[102] M. Shooman. Software Engineering : Design, Reliability, and Manage-
ment. McGraw-Hill, New York, 1983.

[103] J. Short, E. Williams, and B. Christie. The Social Psychology of
Telecommunications. John Wiley & Sons, New York, 1976.

225

www.groupware-patterns.org

www.manaraa.com

[104] Ian Sommerville. Software Engineering. Addison Wesley, Reading,
MA, 6th edition, 2000. ISBN 020139815X.

[105] Blake Stone. OpenTools API. Borland Software Corporation, Oc-
tober 2005. URL homepages.borland.com/bstone/opentools/doc/

ref/OpenToolsAPI.

[106] M. A. Storey, K. Wong, and H. A. Müller. How Do Program Under-
standing Tools Affect How Programmers Understand Programs? Sci-
ence of Computer Programming, 36(2–3):183–207, 2000.

[107] T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue, M. Kawahito,
K. Ishizaki, H. Komatsu, and T. Nakatani. Overview of the IBM Java
Just-in-Time Compiler. IBM Systems Journal, 39(1), 2000.

[108] Chengzheng Sun. Undo as Concurrent Inverse in Group Editors. ACM
Transactions on Computer-Human Interaction, 9(4):309–361, 2002.
ISSN 1073-0516.

[109] Remote Procedure Call Protocol Specification. Sun Microsystems, Inc.,
April 1998.

[110] JINI Technology Architectural Overview. Sun Microsystems, Inc., Jan-
uary 1999. URL www.sun.com/jini/whitepapers/architecture.

html.

[111] Java(TM) Message Service Specification Final Release 1.1. Sun Mi-
crosystems, Inc., March 2002. URL java.sun.com/products/jms/

docs.html.

[112] RMI Architecture and Functional Specification. Sun Microsys-
tems, Inc., 2002. URL ftp://ftp.java.sun.com/docs/j2se1.4/

rmi-spec-1.4.pdf. White Paper.

[113] Java Software Development Kit. Sun Microsystems, Inc., November
2004. URL java.sun.com/j2se/1.4.2/docs.

[114] NetBeans IDE. Sun Microsystems, Inc., November 2005. URL www.

netbeans.org/kb/50.

[115] Sun Java Studio Enterprise Edition. Sun Microsystems Inc., July 2005.
URL www.sun.com/software/index.jsp.

226

homepages.borland.com/bstone/opentools/doc/ref/OpenToolsAPI
homepages.borland.com/bstone/opentools/doc/ref/OpenToolsAPI
www.sun.com/jini/whitepapers/architecture.html
www.sun.com/jini/whitepapers/architecture.html
java.sun.com/products/jms/docs.html
java.sun.com/products/jms/docs.html
ftp://ftp.java.sun.com/docs/j2se1.4/rmi-spec-1.4.pdf
ftp://ftp.java.sun.com/docs/j2se1.4/rmi-spec-1.4.pdf
java.sun.com/j2se/1.4.2/docs
www.netbeans.org/kb/50
www.netbeans.org/kb/50
www.sun.com/software/index.jsp

www.manaraa.com

[116] William Tolone, Gail-Joon Ahn, Tanusree Pai, and Seng-Phil Hong.
Access Control in Collaborative Systems. ACM Computing Surveys,
37(1):29–41, 2005. ISSN 0360-0300. doi: http://doi.acm.org/10.1145/
1057977.1057979.

[117] Iris Vessey and Ajay Paul Sravanapudi. CASE Tools as Collabora-
tive Support Technologies. Communications of the ACM, 38(1):83–95,
January 1995.

[118] J. Christopher Westland. The Cost Behavior of Software Defects.
Decis. Support Syst., 37(2):229–238, 2004. ISSN 0167-9236. doi:
http://dx.doi.org/10.1016/S0167-9236(03)00020-4.

[119] Timothy Wright. Hierarchical Adaptive Concurrency Control for Syn-
chronous Groupware Applications. Master’s thesis, Queens University
of Kingston, Ontario, Canada, 1999.

[120] James Wu, T. C. N. Graham, and Paul W. Smith. A Study of Col-
laboration in Software Design. In ISESE ’03: Proceedings of the 2003
International Symposium on Empirical Software Engineering, page 304,
Washington, DC, USA, 2003. IEEE Computer Society. ISBN 0-7695-
2002-2.

[121] Marvin V. Zelkowitz. Perspectives on Software Engineering. ACM
Computer Surveys, 10(2):197–216, 1978. ISSN 0360-0300. doi: http:
//doi.acm.org/10.1145/356725.356731.

[122] M.V. Zelkowitz, A.C. Shaw, and J.D. Gannon. Principles of Software
Engineering and Design. Prentice Hall, 1979.

227

www.manaraa.com

Acknowledgments

I am indebted to Neville Churcher for his patience, guidance and belief
throughout the entire course of this research. His ability to remain enthusi-
astic and attentive every time I walked into his office with yet another new
problem was genuinely appreciated. I also appreciated his sensible and subtle
ability to bring the project back to its original goals every time I found a
new tangent to spend a few years looking at.

Special thanks must also go to Warwick Irwin for so much valuable help
along every stage of this project. Warwick has a vast amount of knowledge,
skill and energy that he is happy to share with anyone camped outside his
office. Without his input into this project, both the research and framework
implementation would be of a far lower quality than it is today. Additionally,
without the generous contribution of his most excellent semantic analyser
software to my project, I would still be wrestling shift/reduce conflicts in
Bison right now.

My gratitude must also go out to my co-supervisor, Andy Cockburn.
Even though I usually tried to avoid the gaze of his methodical eyes, I truly
appreciated his mantra of adhering to correct scientific methods at all times.

I also thank Carl Gutwin for his positive feedback and encouragement
during the phase of tool development and evaluation, even from half a world
away at times.

Finally, thanks must also go out to all the people along the way who
have foolishly asked my how my Ph.D. is coming along, been bored to tears
by whatever problem it was that I was working on at the time, and yet
replied with supportive comments, genuine belief in my abilities and encour-
agement.

228

www.manaraa.com

Appendices

229

www.manaraa.com

Appendix A

The Caise Server

A brief description of the Caise server was given Section 5.3.4, which
provides details of how the Caise server supports SE functions for CSE tools.
More detailed implementation details of the Caise server are provided in this
appendix.

A.1 Overview

The Caise server is responsible for the storage of all software artifacts,
change history and the semantic model for each Caise-based project. It
is also responsible for controlling collaborative access to information that
it houses. A further role of the Caise server is to generate and broadcast
feedback events to all interested listeners when appropriate, based on user
activity.

The internal structure of the Caise server is illustrated in Figure A.1.
The components in this figure that have not been described previously in
Section 5.3.4 are discussed in this Appendix.

A.2 Language Support

By default, the Caise framework is independent of languages—it is an empty
shell only capable of managing groups of collaborating tools and relaying
events as they occur. To support a specific programming language, a parser
must be available to convert modified source files into parse trees. A semantic
analyser must also be in place that can update a semantic model of the
project’s software from the latest version of parse trees. Finally, source code
formatters must be available to generate source files from the semantic model
for when it is modified directly.

Multiple languages can be supported within the Caise framework. To
introduce a new language, a language-specific parser, semantic analyser and
source code formatter are required.

Within Caise, two languages are currently supported. The first, as men-
tioned previously, is Java 1.4. The second language, created for demonstra-
tion purposes, is named Decaf. Decaf is a subset of the Java language, which

230

www.manaraa.com

Figure A.1: The Caise server architecture.

is used to build prototype tools as proofs of concept, prior to extending the
tools for Java. The Decaf language is described in Appendix B, and some
tools to support Decaf are presented in Chapter 6.

The Caise framework can also support multiple languages within the
same project. To achieve this, multiple parsers and semantic analysers are
likely to be required. Additionally, the semantic model must be complete
enough to accommodate the conventions of each language.

The role of parsers, analysers and formatters within the Caise framework
is now discussed in detail.

A.2.1 Parsers

Parse trees are used extensively within Caise as a form of information in-
terchange. Analysers use them internally to determine source code changes.
When accepting direct semantic model modification commands, analysers in-
ternally construct new versions of parse trees as a convenient way to modify
the semantic model—the new parse trees are simply analysed in the same
manner as parse trees generated from updated source files. Caise-based

231

www.manaraa.com

tools also have uses for parse trees, such as determining which line and col-
umn terminals appear on. Other tools will also accept parse trees for input
into their own local copy of the project semantic model, if one is maintained
locally.

The role of parsers within the Caise framework is to convert source code
into well-formed tree structures, based on the corresponding language’s gram-
mar. The general role of a Caise-based parser is illustrated in Figure A.2.
The Caise framework declares a standard parse tree data type, allowing
any number of different parsers, even for different languages, to conform to
a common standard for subsequent semantic analysis and semantic model
integration.

Figure A.2: Typical role of a Caise-based parser.

There are several techniques for constructing a parser for a given language.
Conventionally, tools such as Bison, Yacc or Cup [57] are used to generate a
compiler for a specific language. The Decaf parser for the Caise framework
was generated by Cup, and the Java 1.4 parser was generated by the Tomita-
based YakYacc tool [61].

A discussion of parsing techniques for OO languages is beyond the scope
of this thesis, but is presented elsewhere [58]. For the purposes of the Caise
framework, a Caise-compliant parser simply needs to output parse trees of
the standard Caise format and conform to the Caise ParserPlugin interface,
as presented in Appendix D.

A.2.2 Source Code Formatters

From within a Caise project, it is possible that some types of tools such as
class diagrammers will directly alter the project semantic model. This is op-
posed to the manner that text editors operate, where modified source files are
parsed, and the resultant parse tree is analysed to actuate the semantic model

232

www.manaraa.com

change. In this case, source files are required to be reverse-engineered from
the semantic model of software, allowing text editors to receive an updated
view of the project’s artifacts subsequent to semantic model modification.

To reverse engineer source files from the semantic model of software, a
component known as a source code formatter is employed. A source code for-
matter is required for each specific language supported within a Caise-based
project. Each source code formatter receives the complete parse tree for a
source file and emits a sequence of characters for each terminal it traverses.
An additional role of source code formatters is to format the source code
according to a predefined coding convention.

At present, the Caise framework has been designed so that a source file
will only be reformatted when required, such as when a class diagramming
tool adds a new method to a file. In the case of a source file that is only
modified by a text editor, the source formatter plug-in will not be invoked.
It is possible, however, to enforce code formatting standards by configuring
Caise to run the source code formatter over source files upon every artifact
modification.

All Caise-compliant source code formatters must conform to the Caise
FormatterPlugin interface, as presented in Appendix D.

A.3 Artifacts

Artifacts displayed by Caise tools may have multiple representations such as
source code buffers and class diagrams. The corresponding artifacts mirrored
within the Caise server, however, have no physical representation; they are
units of information storage only. As explained in Section 5.3, when users
modify an artifact from within Caise tools, the tools themselves relay this
request to the Caise server, which updates the authoritative version of the
artifact and the underlying semantic model, and sends a modification event
to all tools, allowing them to update their local artifact views.

Artifacts within the Caise server have facilities to represent the current
source code listing in plain text and a corresponding parse tree. Artifacts
also contain a list of users that currently have the artifact opened, and a ref-
erence to the user who made the last modification of any kind. Additionally,
artifacts within the Caise server also record a complete change history. To
support this, the previous version of each altered node within a parse tree is
stored in a revision list.

Access to artifacts stored within the Caise server is available through the
Caise tool API. While tools typically generate artifact modification events
and send these to the server to update Caise artifacts, copies of all project
artifacts are available for download and inspection.

233

www.manaraa.com

A.3.1 The Caise Document Buffer

For single-user tools, an artifact can simply be represented as a plain text file
with trivial routines to support the insertion and deletion of characters at
given offsets as modifications are made. For collaborative documents the task
of supporting modification is considerably more complicated. Mechanisms
must be in place to ensure that the edits to the document remain consistent,
and that the view of each tool is kept synchronised with the version on the
server.

To assist in the support of collaborative artifact modification, a compo-
nent internal to Caise artifacts known as a document buffer is employed, as
illustrated in Figure A.3. A document buffer is a collaboration-aware text
repository that maps the locations of all users within the body of text. Re-
quests for insertions and deletions of text are performed by the document
buffer using the last known position of the requesting user, rather than us-
ing an explicit file location. When the buffer is modified, user positions are
updated accordingly.

Figure A.3: User positions within a Caise document buffer.

The reason for performing artifact modifications on known positions rather
than explicit locations is that when making modification requests, tools can
not always determine that the absolute position will remain fixed until the
server has accepted the modification request. For example, if two separate

234

www.manaraa.com

requests are made to modify the document at the same time, the second
request, when processed, will have an incorrect absolute file position. By
using known positions within the document buffer, the second request will
be processed correctly, as all user positions will have already been updated
appropriately.

Upon artifact modification within the Caise server, events are broadcast
to all artifact viewers, allowing them to update their copies of the affected
artifact accordingly. This distributed Model-View-Controller [44] design of
the Caise document buffer is discussed further in Section 6.2.4.

The Collaborative Text Pane within the Caise widgets package, as pre-
sented in Section 6.2.3, uses the Caise document buffer as the underlying
repository and controller for the text that it displays. This approach is in
a manner very similar to the Model-View-Controller design of the standard
Java Swing text widgets.

Fine-Grained Tool Synchronisation

A problem occurs when a partial, or syntactically-incomplete, change is being
made in a source file, and someone else makes a full change from a tool that
does not share the same artifact view, such as a modification in a class
diagram. In this case, either the Caise server or participating CSE tools are
required to merge the in-progress partial modification with the newly updated
artifact in order to preserve the work efforts of both parties. Appropriate
feedback information between highly related developers also helps keep this
type of problem to a minimum.

A.3.2 Implementing Collaborative Undo

Collaborative undo is well known to be a very challenging problem [108, 90,
119]. For genuinely useful CSE tools, however, collaborative undo must be
supported.

Two types of undo are possible within collaborative tools. The first type,
that I call global undo, is where an undo request from any user will undo
the last action that modified the artifact, independent of which user actually
made the change. Global undo is virtually as easy to implement as standard,
single-user undo, but it is not intuitive to use in a collaborative setting. For
example, it is likely to be out of place for one user to see his or her code
changes disappear when another user presses the undo button. Similarly,
it is not desirable to have to delete other users’ later modifications before
having an opportunity to erase some of one’s own work.

Local undo, as I name it, is a more intuitive form of undo, where only one’s
own actions can be undone. This gives the perspective of working somewhat

235

www.manaraa.com

independently, knowing that regardless of the modification activity, pressing
the undo button will only reverse the latest changes of the local user. The
difficulty, of course, is that local undo is challenging to design and implement.

The Caise document buffer maintains a per-user artifact modification
stack, which provides local undo capabilities. When a user invokes an undo
command, the document buffer determines which artifact modification event
is to be reversed, updates the underlying text, and broadcasts this text mod-
ification event out to all viewers of the artifact for local artifact adjustment.

A.3.3 Tool Manager Plug-Ins

The Caise framework provides generic support for the collaborative editing
of text documents, the parsing of source files, and the semantic analysis of
parse trees derived from source code and UML diagrams. In some cases,
however, tools require further functionality from the server, including the
support of new artifact types. To accommodate extensibility within the
Caise server, plug-ins known as tool managers can be integrated through
the Caise plug-ins interface. The tool manager interface specification is
given in Appendix D.

For a UML class diagrammer, it is apparent that such a tool requires
information beyond what is contained within the core semantic model of
the project. As well as displaying all classes, methods and relationships,
a class diagrammer contains class layout information that must be shared
every time any instance of the class diagram is modified. Therefore, when
implementing the UML diagramming tool presented in Section 6.3.2, an ad-
ditional diagrammer-specific type of artifact to store layout information was
introduced, which was managed and shared by a UML-specific tool manager.

For the UML class diagramming tool, whenever a user changes the loca-
tion of a displayed class, a tool-specific event is thrown to the Caise server
via the Caise tool API, and this event is proxied to the UML diagrammer
tool manager. The tool manager will then access and update the new artifact
that stores the class location information, and then broadcast this change out
to all tools in accordance with the Caise tool protocol, allowing all users to
update their local view of the UML class diagram.

The Caise server has no knowledge about the structure or semantics
of new types of artifacts that tool managers introduce. Rather, the Caise
server relies upon the tool manager to handle all modification requests as
invoked by the UML diagramming tool. The Caise server’s role in this case
is only to store and control concurrent access to the artifact.

The Caise tool API allows new artifacts to be loaded against a project
with a specific tool ID. This ID is used by CSE tools to retrieve the artifact
and update it by way of the associated tool manager plug-in.

236

www.manaraa.com

A.4 Server Applications

The most common type of Caise-based tools are those that allow distributed
editing, building and inspection of collaborative software projects. Other
more static types of tools can be envisaged, however, such as visualisation
generators and metrics gathering tools. For this class of tool, the Caise
framework supports server-based applications. These applications run within
the server process itself, providing fast and efficient access to the software
project, its artifacts and the underlying semantic model.

An example of a typical server application could be a project manage-
ment tool that creates an entry in a log whenever certain code metrics have
been violated. Another example of a simple server application is presented in
Figure A.4. This is a simple example of a server application, where a project
semantic model is inspected and the names of all classes within the package
structure are displayed. The code segment listed in Figure A.5 shows how
simple it is for the above application to walk the semantic model program-
matically through an instance of Caise’s Model Visitor class.

Figure A.4: A server application which inspects the semantic model of a
Caise-based software project.

Although an uncommon requirement, server applications have the ability
to modify a project’s semantic model directly as well, causing semantic model
change events to be issued to all listening tools, which will in turn adjust their
local views accordingly. An example of one such tool could be an automatic
refactoring plug-in that periodically repairs easily identifiable violations of
software design.

All Caise-compliant server applications must conform to the Caise Server-
Application interface, as presented in Appendix D.

The Model Visitor Class

The Model Visitor class, demonstrated in Figure A.5, is used by server ap-
plications and Caise-based tools to traverse the project semantic model.

237

www.manaraa.com

public class SimpleModelWalker extends CAISEServerApp {

// called once server is ready
public void run() { initGui(); }

// called upon events
public void update(Collection events) { /∗ do nothing ∗/ }

/∗ InitGui() method omitted ∗/

public void jButton1ActionPerformed(ActionEvent e) {

// get the given project
Project project = Engine.getEngine().getProject("AA");

// get the default package from the project’s model
PackageDecl pkg = project.getModel().getDefaultPackage();

// print out header
setText("Classes in package " + pkg.getSimpleName());

// create an instance of a subclassed model visitor
new ModelVisitor(pkg) {

// override the visit ClassType routine
public void visitClass(ClassType classType) {

// write the class name out to the text panel
addText("\n\t" + classType.getSimpleName());

}
}.visit(); // fire up the adapter

}
}

Figure A.5: The code listing for a simple server application.

238

www.manaraa.com

Following the Visitor idiom [44], user routines are supplied for when a dec-
laration is reached, such as a package, class, or method. The Model Visitor
class is similar in design to the Model Adapter supplied with Borland’s Open-
Tools API [105].

The visitor is initialised with the root declaration that is to be inspected.
This could be the top-level package of the entire semantic model, or some-
thing as specific as a method body. Any user methods supplied to the visitor
will be invoked when appropriate.

It is important to note that the visitor does not perform an exhaustive
search of the semantic model from each declaration, as this may cause infi-
nite loops and repeated search paths. Rather, only the direct declarations
contained in each parent declaration are inspected. For example, a class will
only have its directly declared fields and methods inspected. The superclass
and any subclasses will not be inspected by default, but they can be by
adding explicit code to do so in the user routines.

A.5 The Caise Event Log

As discussed in Section 5.3.2, the Caise framework is based upon sequences
of small, highly frequently occurring events. These event sequences facilitate
the synchronous sharing of artifacts and the incremental updating of the
underlying semantic model. Additional events may also be spawned from
artifact modifications, such as feedback events related to user presence and
changing of the semantic model’s state.

The role of the Caise event log is to capture each event raised within
a Caise project in chronological order. There are many different types of
events within a project, such as project events, text chat events, artifact
modification events, project compilation attempts and specific user actions
such as changing location within a file. Event types were discussed in detail
in Section 5.3.2.

Caise tools can download a project’s full event log for inspection, analysis
and visualisation. Visualisations of the event log for a sample Caise project
were presented in Section 7.2.

A.6 Project Administration

To create a new Caise project, configure it for use with particular languages
and feedback plug-ins, or to inspect the state of an existing project, the
Project Manager Panel is used. This panel is presented in Figure A.6.

The Project Manager Panel is a stand-alone application that connects to
the specified Caise collaboration server. All information for each project
currently stored on the server is available from this panel. Information on

239

www.manaraa.com

Figure A.6: The plug-ins configuration panel of the Project Manager Panel.

each artifact can be displayed, including modification date, current editor
and current viewers. Text messages can be sent to members of the project
group from within this panel on behalf of the project manager user.

To configure a newly created Caise project, the relevant analysers, for-
matters and parsers for the project must be selected. Typically, one of each
will be selected according to the language that the project is written in. As
can be seen in Figure A.6, the Project Manager Panel also highlights the
feedback plug-ins available for each project. For the situation where some
tools within a project require feedback information and others do not, each
tool can simply elect whether or not to register for custom feedback during
project connection.

As server plugins are loaded independent of individual Caise projects,
they are not displayed within the Project Manager Panel. Additionally, in
the current version of the Caise framework there is no option to disable
server plugins for specific projects, but this is trivial to support if required.

Another task supported by the Project Manager Panel is that of server
shut-down. By invoking the shutdown function, the server disconnects all
client connections, and serialises its entire collection of projects to disk before
exiting. At this stage, the server also issues an event to all Caise tools
requesting them to shut down.

A.7 The Plug-Ins Interface

The plug-ins interface provides a means for extending the Caise framework
without modification of the server. Caise-based plug-ins are compiled Java
classes that implement a CAISEPlugIn interface.

240

www.manaraa.com

As discussed previously in this section, Caise plug-ins include parsers,
analysers, source code formatters, feedback plug-ins and server applications.
There is one other type of plug-in within the Caise framework, known as a
tool manager. Tool managers were discussed in Section A.3.3.

All plug-ins are loaded within the Caise server on startup. As discussed
previously, the project manager tool is used to associate specific plugins with
projects. The Caise server inspects a predefined library directory for plug-in
plug-ins, and loads them into the Caise server process. The Caise server
determines which type of plug-in they are, and adds them to the appropriate
list of available plug-ins.

The interface specifications for each type of plug-in are presented in Ap-
pendix D.

A.8 Interprocess Communication

Caise is a concurrent system, where it is likely to receive multiple interleaved
requests to modify a set of artifacts within a short period of time. Invoca-
tions of Caise tool API methods are treated fairly at the Caise server. In
the underlying distributed system that Caise employs for its client inter-
face, each incoming method call is queued and then processed in sequential
order. For all other pending method calls in the queue, a low-CPU blocking
mechanism is used on the client side.

While the Caise tool API makes the Caise server appear directly ac-
cessible via conventional method calls, in reality the server is shared by an
unbounded number of collaborating Caise tools. Therefore, the Caise tool
API is designed to be thread safe, allowing any number of threads from any
number of processes to access the server concurrently. It was essential to
implement a multi-threaded API for the Caise server, and it simplifies ap-
plication programming—developers do not need to be concerned with calling
the API from only a specific thread within their application.

A.8.1 Asynchronous Communication

Within Caise, a purpose-built messaging framework is used for communi-
cation between the server and all participating applications. The messaging
framework, known as caise.messaging, is presented in an accompanying
technical report (see Appendix H). The design of the messaging framework
allows any group of applications to send asynchronous messages of any data
type to each other using the Observer/Observable design idiom [44]. Within
the messaging framework, all data is compressed between endpoints, reducing
the network demands of any system that requires collaborative capabilities.
This is particularly useful for collaborative applications on a slow network.

241

www.manaraa.com

The messaging framework is implemented as a simplified version of the
Java Shared Data Toolkit (JSDT) [18]. As the messaging framework consists
of a single pure-Java package, it is easily used within applications without
high programmatic or architectural overhead. As such, the Caise tool API
employs the messaging framework to deliver asynchronous messages to dis-
tributed Caise-based tools.

A.8.2 Synchronous Communication

The messaging framework only provides broadcast, or asynchronous commu-
nication. Within the Caise framework, synchronous messaging is also re-
quired between Caise-based tools and the Caise server to allow API meth-
ods to be invoked. Therefore, for synchronous communication within the
Caise tool API, RMI [112] is employed. The only architectural considera-
tion in using RMI is that an RMI server process must be running on each
machine in the network that uses the Caise framework; therefore the Caise
API that all Caise-based tools use loads the RMI server process on tool
startup.

Many tools can compete for the Caise server’s attention at any point in
time. As part of Caise’s RMI-based implementation, the Caise server uses
a round-robin mechanism to process one incoming command from each tool
at a time. Therefore, even if one tool issues a large number of commands
in a row, a second tool will not have to queue long before having its first
command processed. While this might seem surprising, it ensures fairness
between tools. If queuing of multiple requests was based entirely on order of
arrival, fairness between tools could not be ensured.

A.8.3 Selection of Distributed Communication Technologies

Many competing communication technologies are available to implement sys-
tems such as the Caise framework. RPC [109] was an obvious first consid-
eration, but it was too complicated and low-level compared to other dis-
tributed systems available today. Conversely, SOAP [74] and other web ser-
vices appeared too high-level and generic, with considerable programmatic
and architectural overheads compared to frameworks such as RMI. Other
emerging technologies considered included JMS [111] and JINI [110]; both
of which may have provided adequate communication facilities to implement
the Caise server and support Caise-based tools.

At the time of framework development, RMI was the most suitable can-
didate distributed system. The JSDT was also considered, but its overhead
was too high and a more lightweight system was required. RMI’s support for
synchronous communication was also significantly stronger than JSDT’s.

242

www.manaraa.com

The well established GroupKit [95] architecture could have also been used
to provide asynchronous communication facilities within the Caise frame-
work. Unfortunately, support for Java-based applications within GroupKit
is limited. The Maui [55] toolkit was also considered, but like GroupKit, its
limited support for synchronous communication made it unsuitable for use
within the Caise framework.

Additionally, by having all services accessed through one central server,
including facilities for communication provided internally by RMI, the Caise
framework was simplified—no dependencies on external libraries or toolkits
are required.

Summary

The details in this appendix provide a starting point for CSE tool develop-
ment using the Caise framework. Examples and descriptions of Caise-based
CSE tools are presented in Chapter 6.

243

www.manaraa.com

Appendix B

Language Specification for Decaf

B.1 Overview

The Decaf language is a subset of Java. It has been derived for testing pur-
poses within the Caise framework. Decaf is a pure object oriented language;
it has no primitive types, predefined operators or complicated language con-
structs such as pointers.

Decaf is currently only supported by a parser, semantic analyser and pro-
totype development tools. A compiler specifically built for the language does
not exist, but it would be trivial to process and pipe Decaf programs into
a Java compiler to produce working applications. Additionally, as Decaf is
modelled by the Caise framework’s general model of object oriented soft-
ware, Decaf programs will be able to be compiled once a generic compiler for
Caise-based projects has been introduced.

B.2 An Example Source File

For demonstration purposes, an example Decaf source file is given in Fig-
ure B.1.

B.3 An Example Grammar

The full Decaf grammar is presented in Figure B.2.

244

www.manaraa.com

class Foo {
Integer i;
Collection wibbles;

Bar getBar() {
return Bar.makeBar(this);

}

void addWibble(Wibble w) {
wibbles.add(w);

}
}

class Bar {
String getName() {

return "Bar object";
}

Bar makeBar(Class caller) {
return this;

}
}

Figure B.1: An example source file for the Decaf language.

245

www.manaraa.com

Artifact → ε
| Class Artifact ;

Class → CLASS ID LBRACE Members RBRACE ;
Members → ε

| MemberDecl Members ;
MemberDecl → PropertyDecl

| MethodDecl ;
PropertyDecl → TypedDecl SEMICOLON ;
TypedDecl → ID ID ;
MethodDecl → TypedDecl LPAREN OptionalParameters RPAREN Body ;
OptionalParameters → ε

| ParameterDecl ;
ParameterDecl → TypedDecl

| TypedDecl COMMA ParameterDecl ;
Body → LBRACE OptionalStatements RBRACE ;
OptionalStatements → ε

| Statement OptionalStatements ;
Statement → Expression SEMICOLON

| VariableDecl SEMICOLON
| ReturnStatement SEMICOLON ;

Expression → MethodCall
| Assignment
| ID
| Literal ;

VariableDecl → TypedDeclaration ;
ReturnStatement → RETURN Expression ;
MethodCall → ID DOT ID LPAREN OptionalArguments RPAREN ;
Assignment → ID EQUALS Expression ;
Literal → INTEGER LITERAL

| STRING LITERAL ;
OptionalArguments → ε

| Argument OptionalArguments ;
Argument → Expression

| Expression COMMA Argument ;

Figure B.2: The full grammar for the Decaf language.

246

www.manaraa.com

Appendix C

Caise Event Log DTD

This DTD represents the structure of the Caise event log. The Caise
event log is stored in XML format, and is validated against this DTD for
consistency. The event log consists of three core sections:

Components Each declaration within the model is listed as a component
within the DTD. Components incorporate a unique identifier to assist
locating it within the live Caise-based semantic model. Components
can represent packages, types, methods and blocks as well as low-level
declarations such as parameters and local variables

Users Each user within the Caise project is also uniquely identified

Events Every event within the lifetime of the Caise project is recorded.
Event types consist of actions from tools such as artifact modifications,
actions of users such as a compilation attempt, and semantic events
such as the resolution of a method invocation to a given method dec-
laration.

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<!−− DTD for representing events in a CAISE project −−>

<!ENTITY version "V0.010alpha">

<!−− An event log consists of a header, followed by the used components in the model,
the users within the project, and the events generated by users −−>

<!ELEMENT CAISEEventLog (Header, Components, Users, Events)>
<!ATTLIST CAISEEventLog version CDATA #IMPLIED>

<!ELEMENT Header (ProjectName, Generator?, TimeStamp?) >
<!ELEMENT ProjectName (#PCDATA) >
<!ELEMENT TimeStamp (#PCDATA) >
<!ELEMENT Generator (#PCDATA) >

<!−− Only components involved in the logged events. See model
dump for all components and relationships.
A component is a decl in the semantic model −−>

247

www.manaraa.com

<!ELEMENT Components (Component*)>
<!ELEMENT Component EMPTY>

<!ATTLIST Component
id ID #REQUIRED
type (interface | class | constructor | field | method | package | parameter
| sourcefile | variable | block | catchblock) #REQUIRED
name CDATA #REQUIRED
owner IDREF #REQUIRED

>

<!ELEMENT Users (User*) >
<!ELEMENT User (Tool, Host) >

<!ATTLIST User
name ID #REQUIRED>

<!ELEMENT Tool (#PCDATA) >
<!ELEMENT Host (#PCDATA) >

<!−− An event is anything that the server processes and informs caise tools about
within the feedback loop. Incidentally, changes to Auxillary artifacts are
logged via ToolManager events, but the creation and opening of auxillary
artifacts are not. −−>

<!ELEMENT Events ((Project | Client | Artifact | Change | Chat | Feedback | ModelUpdate
| ToolManager)*) >

<!−− Project event such as a new project being created −−>
<!ELEMENT Project EMPTY >

<!ATTLIST Project
user IDREF #REQUIRED
action (added | deleted) #REQUIRED
timestamp CDATA #REQUIRED

>

<!−− Chat message sent via client panel −−>
<!ELEMENT Chat (Message) >

<!ATTLIST Chat
from IDREF #REQUIRED
to IDREF #REQUIRED
timeOffset CDATA #REQUIRED

>

<!−− Feedback plugin response to an event −−>
<!ELEMENT Feedback (Message) >

<!ATTLIST Feedback
type CDATA #REQUIRED
srcUser IDREF #REQUIRED
destUser IDREF #REQUIRED
srcEntity IDREF #REQUIRED
destEntity IDREF #REQUIRED
timeOffset CDATA #REQUIRED

>

248

www.manaraa.com

<!ELEMENT Message (#PCDATA) >

<!−− Client has requested that the model be directly changed −−>
<!ELEMENT ModelUpdate (EMTPY) >

<!ATTLIST ModelUpdate
user IDREF #REQUIRED
type (addition | deletion | modification) #REQUIRED
component IDREF #REQUIRED
timeOffset CDATA #REQUIRED

>

<!−− Tool manager events − such as component moved in class diagrammer −−>
<!ELEMENT ToolManager (CustomData)?>

<!ATTLIST ToolManager
pluginID CDATA #REQUIRED
user IDREF #REQUIRED
timeOffset CDATA #REQUIRED

>
<!ELEMENT CustomData (#PCDATA)>

<!−− a Client event is an action such as a project opened, a location changed, etc −−>
<!ELEMENT Client (Object?, Location?, Result?) >

<!ATTLIST Client
user IDREF #REQUIRED
action (location changed | opened artifact | closed artifact | opened project |
closed project | rebuilt project) #REQUIRED
timeOffset CDATA #REQUIRED

>

<!ELEMENT Object (#PCDATA) >

<!ELEMENT Location (#PCDATA) >

<!ELEMENT Result EMPTY >
<!ATTLIST Result

rebuild (succeeded | failed) #REQUIRED
>

<!−− an Artifact event denotes something that happend to an artifact −−>
<!ELEMENT Artifact (AppendInfo?) >

<!ATTLIST Artifact
user IDREF #REQUIRED
action (added | appended | replaced | saved | save failed | deleted) #REQUIRED
component IDREF #REQUIRED
timeOffset CDATA #REQUIRED

>

<!ELEMENT AppendInfo EMPTY >
<!ATTLIST AppendInfo

249

www.manaraa.com

type (keyTyped) #REQUIRED
keyChar CDATA #REQUIRED
asciiValue CDATA #REQUIRED
fileOffset CDATA #REQUIRED

>

<!−− A Change event represents a semantic change to a component in the model.
This is normally generated from a user input event, such as a modfication to
a source file. −−>

<!ELEMENT Change (ReferenceInfo?) >
<!ATTLIST Change

user IDREF #REQUIRED
type (addition | deletion | modification | reference resolved | reference unresolved |
references fully resolved) #REQUIRED
component IDREF #REQUIRED
timeOffset CDATA #REQUIRED

>

<!ELEMENT ReferenceInfo (#PCDATA) >

250

www.manaraa.com

Appendix D

Caise Server Plug-Ins Specification

In this appendix, the interface details for each type of Caise plug-in are
highlighted. A user manual for the Caise framework, including a Javadoc de-
scription of each plug-in interface, is available from www.cosc.canterbury.

ac.nz/clc/cse. The listings given here provide an introduction for each
interface.

D.1 CAISEAnalyser

The CAISEAnalyser interface supports the adding of parse trees to the se-
mantic model. A parse tree is mapped to a given source file. New parse trees
are also capable of being generated by a CAISEAnalyser, which is typically
the result of making a direct semantic model modification request through
the Caise tool API.

CAISEAnalysers must also be able to cross-reference the current semantic
model, which is normally requested by the Caise server after a parse tree
has been added or removed.

CAISEAnalysers also provide facilities for searching the semantic model,
according to the location of the search starting point and the scope rules of
the corresponding language.

Method: void addParseTree(SourceFile sourceFile)

Description: Adds the given parse tree to the semantic model
Parameters: SourceFile sourceFile, the source file containing the parse

tree
Returns: Nothing

Method: Artifact updateParseTree(CAISEEvent event)

Description: Construct an updated parse tree according to the requested
change to the semantic model

Parameters: CAISEEvent event, the event holding the requested semantic
model change information

Returns: A copy of an Artifact that holds the new parse tree

251

www.manaraa.com

Method: void crossReference(SourceFile sourceFile)

Description: Cross reference all currently known symbols in file by running
through the parse tree, resolving references to named types

Parameters: SourceFile sourceFile, the file to be cross-referenced
within the semantic model

Returns: Nothing

Method: TypeDecl lookupType(Scope currentScope, String

typeName)

Description: Look for a given type within the semantic model
Parameters: Scope currentScope, the scope at the point of lookup

String typeName, the name of the type being looked up
Returns: The TypeDecl, if found

Method: PackageDecl lookupPackage(String packageName)

Description: Look for a given package within the semantic model
Parameters: String packageName, the name of the package being looked

up
Returns: The PackageDecl, if found

Method: MethodDecl lookupMethod(Scope currentScope, String

methodName, List paramTypes)

Description: Look for a method within the semantic model
Parameters: Scope currentScope, the scope at the point of method

lookup
String methodName, the name of the method being searched
List paramTypes, the parameter list of the method being
searched

Returns: The MethodDecl, if found

D.2 CAISEFeedback

The Caise server invokes CAISEFeedback modules upon the occurrence of
any Caise tool event. CAISEFeedback modules typically inspect the current
project and create a collection of relevant feedback events for each user.

Method: Map getFeedback(Project project)

Description: Generate custom feedback given the current state of the se-
mantic model

Parameters: Project project, the project to inspect
Returns: A Map where each key is a specific user, and each correspond-

ing value is a collection of custom Caise feedback events for
that user

252

www.manaraa.com

D.3 CAISEFormatter

CAISEFormatters are given a Caise-based parse tree, and their role is to
produce a corresponding source file. Source files are returned as plain text.
Each CAISEFormatter will format code according to a user-defined specifi-
cation, which is implemented internally.

Method: String format(Object parseTree)

Description: Translate a parse tree into a well-formatted source file
Parameters: Object parseTree, the parse tree to be formatted
Returns: A String representation of the newly created source file

D.4 CAISEParser

CAISEParsers translate plain-text source files into Caise-based parse trees.
Parse trees can be constructed in any means possible; typically parser gen-
erator tools are used to implement CAISEParsers.

Method: Nonterminal parseBuffer(String buffer)

Description: A Caise parser converts source code into a Caise-compliant
parse tree

Parameters: String buffer, the source code in plain text
Returns: A Caise-compliant parse tree, with a Nonterminal as the

root

D.5 CAISEServerApp

CAISEServerApps are loaded at start-up by the Caise server. Upon load-
ing, the init method is invoked, allowing CAISEServerApps to perform any
implementation-specific start-up routines. Upon successful invocation of the
initialisation method, each CAISEServerApp is executed via the run method
in a separate thread.

During operation of the Caise server, CAISEServerApps are notified each
time a Caise event is generated. CAISEServerApps are not permitted to
create additional events for distribution to Caise-based tools, but they do
have direct access to the semantic model of each project contained within
the Caise server, and may modify it as required.

Method: boolean init()

Description: Initialise the server application. Called on server startup
Parameters: None
Returns: Returns true if the server application was successfully ini-

tialised

253

www.manaraa.com

Method: void run()

Description: Starts the server application if it has been successfully ini-
tialised

Parameters: None
Returns: Nothing. This method will only return if the server applica-

tion shuts itself down

Method: void update(Collection events)

Description: A call-back method from the Caise server upon any event
being raised within the framework. Server applications may
require knowledge of specific events as the occur

Parameters: Collection events, The current cache of events within the
framework

Returns: Nothing

D.6 CAISEToolManager

CAISEToolManagers are responsible for the management of auxiliary arti-
facts specific to a given tool. Caise-based tools may request an artifact to
be opened, at which time a copy of the artifact is returned to the calling tool
via the Caise server.

To modify an artifact, Caise tools call the fireToolEvent() API method,
which is passed to the CAISEToolManager’s processToolEvent() method.
The CAISEToolManager updates the specified artifact in an implementation-
specific manner, and then propagates the resultant change to all tools through
the return value of the processToolEvent method.

Method: Object openAuxilaryArtifact(String artifactID,

Client requestor)

Description: Open an artifact that is controlled by this tool manager
Parameters: String artifactID, a unique identifier for this artifact

Client requestor, the user that requests access to the arti-
fact

Returns: An Object that represents a copy of the auxiliary artifact

Method: CAISEEvent processToolEvent(CAISEEvent event)

Description: Process an input event from one tool
Parameters: CAISEEvent event, the event thrown from the participating

Caise tool
Returns: A corresponding CAISEEvent which will be sent to all listeners

254

www.manaraa.com

Method: void closeAuxilaryArtifact(String artifactID,

Client requestor)

Description: Close access to an artifact that is controlled by this tool man-
ager

Parameters: String artifactID, a unique identifier for this artifact
Client requestor, the user that no longer requires access to
the artifact

Returns: Nothing

255

www.manaraa.com

Appendix E

IDE Integration

At the time of framework development, Together Architect for Java [46]
was chosen for framework integration. This was arguably the most com-
prehensive Java IDE on the market, and had a wide user base. Together
Architect offers a plug-ins API, allowing tool developers to add new compo-
nents within the IDE, and to listen for events such as file activity.

Using a plug-in that acted as a proxy between Together Architect and the
Caise server, a means was established to incorporate the Together IDE as
a Caise-based tool. Adhering to the Caise tool protocol, any change made
within Together Architect was sent back to the Caise server and propagated
to all other participating instances of the IDE and other Caise-based tools.

The synchronous editing of the same file between multiple users was im-
plemented to the best ability that the Together Architect API allowed. Fine-
grained events such as individual keystrokes, however, are not raised by To-
gether Architect’s API, which means that source files could only be updated
on a per-save basis. Better API support for low level operations, or access
to the source code is required if Together Architect is to be integrated as a
fully-synchronous Caise-based tool. Using social protocols to moderate con-
current file access, however, allowed the IDE to be used successfully within
the current suite of Caise-based CSE tools.

By the time of writing, the Eclipse IDE [83] had matured into a power-
ful and widely-used alternative platform for Java development. Therefore,
Eclipse is an ideal candidate tool to incorporate within the Caise framework,
especially given its extensive APIs and full access to source code.

The Together Architect IDE operating as a Caise-based tool is presented
in Figure E.1. This uses the services of the Caise framework to provide infor-
mation about what other users are doing in the project. The Change Graph
(A) keeps track of cumulative remote user modifications. The User Tree
(B) displays the current location of each developer relative to the project’s
semantic model. Together Architect’s message panel (C) is used to display
feedback information related to user proximities and impact reports.

The Caise-based version of Together Architect (A) working alongside a
Caise-based text editor (B) within the desktop of a single user is presented
in Figure E.2. Both tools are being used to edit and view the same source

256

www.manaraa.com

Figure E.1: The Together Architect IDE operating within Caise.

257

www.manaraa.com

file, and the User Tree in the bottom left segment of the IDE window keeps
track of current user locations.

The Caise-enabled version of Together Architect presents a comprehen-
sive test of the strength and viability of the Caise framework. By using
an industrial-strength tool such as Together Architect, it is illustrated that
Caise is suitable for commercial tool use, and can accommodate multiple
users joining and leaving at any time.

A key aspect of incorporating Together Architect within the Caise frame-
work is that it removes the requirement of using a code repository between
instances of the IDE within a collaborating group of developers. For software
engineers who wish to work together in real time using professional tools, the
Caise framework provides a mechanism for doing so on the premise that pro-
grammatic access to such tools exists.

258

www.manaraa.com

F
ig

u
re

E
.2

:
T

h
e

T
og

et
h
er

ID
E

op
er

at
in

g
al

on
gs

id
e

a
C

a
is

e
-b

as
ed

ed
it

or
.

259

www.manaraa.com

Appendix F

User Evaluation Design

This appendix gives full details of the user evaluation presented in Sec-
tion 7.3, including the methodology, environment configuration and results.
It is intended that this appendix provides enough details so that the exper-
iment can be reproduced by other researchers for comparison against other
systems and types of users.

F.1 Overview

It is a challenging task to design a valid SE experiment of any kind. An
example of the detail that must be addressed is given elsewhere [14]. For this
reason many software engineers leave the task of empirical evaluations to that
of other disciplines within computer science, where the number of variables
to address is fewer and the difficulty of isolating them is considerably less.

To design a credible SE experiment, the first aspect is to determine pre-
cisely what it is to be measured: task completion times, software quality and
bug rates, robustness and quality of design, and other subjective measures
such as perceived effort and frustration. Following that, it may be neces-
sary to either isolate or explicitly control independent variables such as the
scope of the task, participants’ familiarity with the tool set, team size and
individual roles, and the type of task being performed. Additionally, con-
founding factors such as programmer abilities and learning effects need to
be addressed. Without isolating the independent variables and addressing
confounding factors, a vast number of variables could affect and distort any
findings.

Given that it is possible to identify a dependent variable, isolate and
control the independent variables, and remove all confounding secondary
factors, there are still two considerable issues to consider for SE experiments:
is the experiment still at a level realistic enough to show an effect that is
globally useful; and if an effect is observed, is it possible to claim causality
rather than just a correlation. An even harder aspect to consider within CSE
research is the types of systems to compare CSE tools against in order to
provide an objective and useful comparison.

260

www.manaraa.com

F.2 Aim and Purpose

A concern shown elsewhere is that programmers do not use collaborative
systems as much as they can and arguably should [51]. The experiment
detailed here aims to demonstrate that a set of real time collaborative tools
not only provide a more efficient alternative to concurrent program editing
with code repository systems, but participants also prefer using the new tools.

There are many perceived benefits of using CSE tools: faster task com-
pletion rates, greater levels of team efficiency, greater understanding of local
and remote changes, less or no delay between file updates, fewer or no merge
conflicts, and higher levels of communication between programmers. These
are all anecdotal claims however; very little empirical research has been con-
ducted to support these claims.

Only a small number of claims can be asserted in any one trial. Therefore,
the primary goal of this experiment is to illustrate faster task completion
times using collaborative tools when compared to an equivalent set of tasks
using conventional code repository practices.

As a subjective measure, this experiment also surveys perceived levels of
change understanding, frustration, success and effort for both modes of tool
operation.

Finally, users are asked how much they envisage using such CSE tools in
a range of settings. It will be most beneficial to discover if the participants
embrace or dismiss the concepts behind the tools. It has been a fear that
even though the tools may appear superior from a design perspective, ‘real’
users will not like them regardless of the actual efficiency levels. Empirical
evaluations of other tools have not always produced results that match the
researchers’ expectations [19].

An additional outcome of this experiment, if completed satisfactorily, is
that an assertion can be made that the tools are robust enough and appro-
priately designed to accommodate use by complete newcomers.

If the tools reduce task completion times and are favoured by the users,
this provides confirmation that their design, implementation and user inter-
faces are at least satisfactory in terms of suitability for broad-scale CSE.

F.3 Evaluation Methodology

An overview of the evaluation methodology was given in Section 7.3.1. In
this section, specific details are given.

As explained in Section F.2, it is difficult to design an evaluation where a
fair comparison of conventional and collaborative tools can be made. Details
are given here of an experiment that negates as many confounding effects as

261

www.manaraa.com

possible for a set of realistic programming tasks, and isolates the dependent
variable of task completion rates for objective measurement.

It is important to emphasise that core speed in terms of task completion
rates are being investigated. To allow this, equalisation of effects must take
place such as programmer ability, physical and mental effort of tasks, task
types and scope, and effects of different tools within the evaluation. By
isolating these effects, the evaluation may appear somewhat mechanical, but
a fair measure of the core comparative speeds of the tools is possible. A
number of external factors will affect the overall efficiency and effectiveness of
collaborative tools, but the experiment will still provide a useful and reliable
insight of the CSE tools.

F.3.1 Participants

For this experiment, 12 postgraduate Computer Science students were used,
which represented the entire class for an advanced OO design course. By se-
lecting this class, it was assured that each participant had an interest and ex-
perience in SE. All participants had at least minimal operational experience
in source code repositories and group work. The students possessed grade
point averages ranging from satisfactory to excellent. All participants were
male with an even spread of ages from 21 to 30, which is an approximately
representative sample of the professional software development population.

After selecting the participants, they were left to organise themselves into
groups of two. Upon formation of the six groups, most pairs had worked with
each other in some SE context over the last two years.

F.3.2 Physical Layout

Each evaluation session involved a pair of participants, with the layout of
participants and equipment presented in Figure F.1. As the physical loca-
tion of participants had the potential to alter the task completion rates, the
environment for the evaluations was kept constant for the duration of this
experiment. For this experiment, the configuration of the environment was
designed to be representative of a typical co-located programming setting.

The participants worked within two meters of each other, but the mon-
itors were not in direct line of sight of each other. In this configuration,
the participants were able to directly observe and possibly circumvent the
activities of each other, but only if they made the conscious effort to draw
themselves from their own work. They were at all times able to communicate
with each other orally without impairment. Finally, the experiment was held
in an isolated office without any risk of interruption or interference.

262

www.manaraa.com

Figure F.1: Evaluation layout of CSE tools experiment.

F.3.3 Apparatus

Both the desktop workstations and the Caise server ran the Fedora Core 3
operating system with the Linux 2.6.9-SMP kernel. The Caise framework
was compiled with Sun’s Java 1.5.0 Standard Edition compiler and executed
with the corresponding Hot-spot virtual machine.

The desktop workstations were 32-bit Dells with a single Intel Pentium-4
2.8GHz CPU. The Caise server was a 64-bit ASUS machine with dual AMD
Opteron 2.0 GHz CPUs. All machines had 2 Gb of primary memory and
10 Gb of swap space.

The desktop workstations hosted the standard Gnome X desktop running
at 1600 by 1200 resolution. On each machine ran a local instance of the Caise
server process and the two Caise tool applications. No other applications
ran on the workstations apart from the core Linux services. The server ran
without a display, again running only the core Linux services and the Caise
server process.

The communication medium between the participating machines was a
100 Mbps switched Ethernet network, dedicated for the use of the partici-
pants’ desktop machines and the Caise server.

F.3.4 Supporting a Minimal Code Repository Interface

For this experiment, it was very important to make interactions between
the source code repository and the client tools as simple as possible. If the
interface to the repository was cumbersome or complicated, it would greatly
skew the task completion rates that are being measured.

CVS was used as the underlying repository, but the users were not aware
of this technicality. For the Caise-based tools, CVS was encapsulated simply

263

www.manaraa.com

as a high level and generic code repository. This is similar to the simple
manner in which a Wiki Web supports different versions of files, even though
a complex code repository system is employed on the Wiki server.

Advanced users of CVS and other source code configuration systems will
know how to use its features to avoid potential merge conflicts and trans-
actional errors [51]. This experiment is not designed for advanced users
however, although this type of user is addressed in Section 7.3.3. Therefore,
participants in this experiment require only an average programming ability
and a simple command of a code repository system.

For this evaluation, code repository support was incorporated into the
Caise-based tools. Accordingly, when the tools are started in conventional
mode, they keep all changes to files isolated from other users. File modi-
fications can be exchanged through a code repository menu. This menu is
presented in Figure 8.2.

The code repository was designed to be a simple as possible to use, and
accordingly as fast as possible. Safeguards were also required to ensure that
participants did not make errors when synchronising their source files. Many
users struggle with systems such as CVS; typical problems include forgetting
to download and work on the latest version of the repository, forgetting
to upload new or modified files back to the repository, and checking-in a
subset of files that build locally but will break the repository’s version of the
program. A syntax directed interface to the repository was implemented, as
discussed in Section 8.1.1, where only valid repository actions could be made
given a set of local files and a central code repository.

It took many prototype design sessions and pilot studies to create the code
repository interface presented here. This type of syntax directed interface is
a highly appropriate mechanism to support making a comparison between
conventional and collaborative SE. It allows comparison of the essential
differences between the two modes of work, and mitigates factors such as the
time it can take to type in code repository commands or to navigate through
a cumbersome repository interface, determining the correct code repository
commands for the current state of the local files and the global repository,
and the imbalance of repository experience levels between participants.

F.3.5 Tool Modes

As this experiment compared conventional and collaborative SE task com-
pletion rates, the set of Caise-based tools were required to run in both
collaborative and conventional modes. In this manner, as long as the code
repository interface is minimal, there should be no confounding factors in
terms of tool type—the participants can use the same tool for both tasks,
with very little practical difference between the two tool modes.

264

www.manaraa.com

When the tools were operating in collaborative mode, a central server
was responsible for supporting communication between all participating tools
and for keeping code synchronised in real time between participants. In
conventional mode, the central server was not employed; a local instance of
the server process was used to maintain code at the scope of each individual
workstation. To synchronise the code modifications between participants,
the code repository interface would access a CVS server on a local network
file system partition.

The learning effects of individual tool modes is addressed in Section F.3.7.
Additionally, to keep the workstation memory loads constant between tool
modes, a local copy of the server process ran on each workstation in collab-
orative mode, albeit redundant.

F.3.6 Task Types

This evaluation assessed two types of task completion rates. One was for task
completion rates of between files changes; the other was within files changes.
CSE is normally a combination of both types of tasks, but both cases were
needed to be treated separately in order to remove any effect of interaction
on task completion rates.

All tasks within both sets were designed to generate some sort of conflict
between the two participants. For between-files tasks, a transactional conflict
would occur, meaning there is a problem with the program semantics as a
result of the concurrent modifications. A transactional conflict is one where
the syntax of the changes is legal, but a semantic error would result once
both participants’ modifications were synchronised. For example, one user
might rename a method while the second participant would make a new call
to the method by the original name. Only when the files are synchronised
and the resulting code is rebuilt will the error be exposed.

For between-files tasks, a merge conflict would result after each partici-
pant had made their change and synchronised their code, meaning that there
is a problem with the program’s syntax as a result of the concurrent modifi-
cations. A merge conflict results from overlapping modifications to separate
local copies of a source file; when the code repository system attempts to
synchronise the changes from multiple users it fails because of there is no
deterministic way of forming a final, conflict-free version of the file.

As an example of a merge conflict, one participant could be editing a
sequence of statements within a method so that instead of evaluating several
complicated conditionals, the code is refactored as a more comprehensible
switch/select block. At the same time, the other participant might be editing
a second copy of the original file so that one of the conditionals is simplified
syntactically. In this case, most code repository systems would give a merge

265

www.manaraa.com

conflict error where it is up to the participants to resolve the merge conflict
manually and resubmit the final version to the code repository.

F.3.7 Order of Groups and Tasks

The order of groups in which the evaluations were held and the order of
tasks that each group performed are presented in Table F.3.7 (Cv stands
for conventional mode, Cb stands for collaborative mode. T1 and T3 are
between-files tasks, T2 and T4 are within-files tasks). Careful consideration
was given to the design of task ordering between groups; the main objective
was to negate or minimise any learning effect of tool mode and task type.

Group Task Configuration Order
1 CvT1 CvT2 CbT3 CbT4 1 2 3 4
2 CvT1 CvT2 CbT3 CbT4 4 3 2 1
3 CvT1 CvT2 CbT3 CbT4 1 3 2 4
4 CbT1 CbT2 CvT3 CvT4 4 2 3 1
5 CbT1 CbT2 CvT3 CvT4 3 2 4 1
6 CbT1 CbT2 CvT3 CvT4 1 4 2 3

Table F.1: Task types, tool modes and order of tasks.

Each pair of participants was used for both the treatment and the control
group. Separate yet similar tasks were employed for each tool mode; this is
the reason why there are two tasks for each task type. By using each group
as a treatment and control, any imbalance between individual groups was
negated. If one group was exceptionally good or bad at a given task, they
were likely to produce the same result for both tool modes.

To reduce the risk of a learning effect on task type or tool mode, each
group had a different order of task type and tool mode. Group one, for exam-
ple, first did both tasks in conventional mode and then collaborative mode.
Group two did both tasks in collaborative mode first, followed by conven-
tional mode. From Table F.3.7, task modes were also alternated between
groups. If there was any learning effect from task type or tool mode, it was
likely to be countered by the nature of the group and task assignments.

Since participants acted as both the control and treatment group, the
only other confounding factor could come from differences within the sets
of tasks. While it may at first seem relatively simple to create two similar
tasks for each task type, in practice this was quite challenging to achieve.
Ensuring that the tasks were distinct was important to reduce any learning
effect, yet the tasks had to be nearly identical in terms of syntax, semantics,
typing effort and conflict resolution actions to ensure that the tasks were
objectively comparable.

266

www.manaraa.com

In Section F.3.11, analysis of the experiment results shows that there was
no significant difference between any pair of task types for each tool mode.
Again, if there was any difference within a set of tasks of the same type,
due to the design of the group and task order, the impact would be largely
negated.

F.3.8 Training Manual

Participants were given a 30 minute training session prior to completion of
the evaluation tasks. It is hoped that by giving a thorough training, learning
effects of tools and task types were minimised. To assist the training period,
a training manual was given to each participant a few days prior to the
evaluation session. This gave the participant a chance to gain an overview
of the tools and tasks, and allowed him or her to prepare questions for the
training session.

The training manual provided the participants with an overview of the
code repository system, how to operate the code repository within the evalu-
ation tools, how the real time editor and awareness support components op-
erate, and how the basic editing and compiling functionality works for both
tool modes, such as cut, copy, paste, undo, compile and run. An excerpt
from the training manual is given in Appendix G.1.1. This appendix also
gives details on how to obtain a full electronic copy of the training manual.

Training Tasks

Within the training manual there were four mechanically-scripted tasks to
complete. Two of the tasks are conflict-free, the remaining two contain in-
evitable conflicts. Two of the tasks involve within files changes, the remaining
two involve between files changes. The four tasks are performed by each pair
of users firstly using the tools in conventional mode, and then again with
the tools in collaborative mode. An excerpt from the training tasks sheet is
given in Appendix G.1.2.

Answer Sheet

Each conflicting task within the training session has a prescribed resolution.
When the participants encounter a conflict, they were instructed to refer
to the training tasks answer sheet for the correct resolution. The answer
sheet simply details which parts of the code need to be replaced, and what
these lines of code need to be replaced with. Upon correct resolution of the
conflicting code changes, the program should compile again, and the task
is then considered to be complete. An excerpt of the training tasks answer
sheet is also given in Appendix G.1.2.

267

www.manaraa.com

F.3.9 Evaluation Tasks

The evaluation tasks were again mechanically scripted for each participant,
with check-boxes on the manuscripts to help prevent participants from skip-
ping instructions or performing operations in an incorrect order. As in the
training tasks, an answer sheet was provided to resolve the resultant conflict
from the two sets of changes. An excerpt of the evaluation tasks sheet and
answers is given in Appendix G.1.3.

Each participant worked as fast as they could on their set of instructions,
and the first group member to complete his or her work, including recompiling
the code and verifying that the application still worked properly, could submit
his or her updated files to the code repository first and not have to deal with
any potential transactional or merge conflicts. In all cases, the participant
who finished his or her tasks second had the duty of correcting the now
exposed conflict. For the tasks that were performed in collaborative mode,
the issue of which participant did the code correction was determined by
whoever discovered the conflict.

F.3.10 User Survey

A survey was given to each participant to complete in private at the end of
each task. The aim of the survey was to provide a comparison of the tools
running in both modes of work for each task type.

For this survey, NASA-TLX questions [52] were used to determine and
compare the perceived effort, success and frustration levels of each partici-
pant. By using the standard NASA-TLX questions, results are made avail-
able for comparison against any other related studies that use the same sur-
vey technique. Additional subjective questions were also asked, related to
the understanding of code changes and the perceived ease of file control.

A survey was also given at end of each session. This was purely for
feedback on the underlying concepts of the Caise framework, such as did
the participant like the concept of real time code sharing and editing, and
would the participant consider using such a system if it was made available
outside of the evaluation.

The questions and aggregated responses for both surveys were given in
Section 7.3.2, and excerpts of the surveys are given in Appendix G.1.4.

F.3.11 Statistical Validity

The use of statistics must be valid and justifiable before the results are anal-
ysed and reported. Aspects to consider when looking at the statistical valid-
ity of empirical SE tasks include the choice of statistical test, design of the

268

www.manaraa.com

experiment to eliminate confounding factors, and post-evaluation analysis of
the data to ensure it fits with the test.

One-way analysis of variance (ANOVA) was selected for this evaluation.
Tests are designed to detect any statistically significant difference between
the sample means, where separate tests are conducted for within files and
between files tasks. In the case of this evaluation there were only two means
to compare, so a two-sample t-test could have been used to give identical
results.

Interactions (two-way ANOVA) of tool mode and task type were not
investigated. This would be an interesting aspect to explore, but it is not the
focus of this study. While it can not be ruled out that there could be some
interaction between the task type and tool mode, the evaluation presented
here specifically isolated each task type.

From literature related to the use of empirical statistical analysis [54],
it is safe to assert a statistically significant, valid and meaningful difference
between two means if:

• The power of the test is not too high. A high power test is susceptible to
asserting that a negligible difference between two means is statistically
significant

• All samples are a simple random survey (SRS) of the population, where
the population follows a normal or near-normal distribution. This also
implies that the samples should follow normal or near-normal distribu-
tions with similar standard deviations to each other

• The sample sizes are the same or similar to each other

• The measures of both samples are independent of each other

• There is no bias in the experimental design

The evaluation presented in this appendix has not breached any of the
above guidelines, and therefore the results of the statistical tests are signifi-
cant, uncompromised and applicable to the field of CSE research. Justifica-
tion of this claim is provided in the remainder of this section.

Design of Trial

A common criticism of statistical tests is that unless the number of observed
values is large, the results are not valid due to the low statistical power of the
test. This criticism is only valid when asserting similarities between a set of
means, not differences. For the evaluation presented in this thesis, attention

269

www.manaraa.com

is focused on finding a statistically significant difference between the task
completion rates for the two tool modes; if any difference is found then it is
a valid difference.

To discover a difference is a challenging task, however. Means are required
that are distant from each other, with standard deviations small enough that
they do not overlap significantly. To achieve both of these characteristics
from the data, normally a large, high power sample is required to reduce the
standard deviation size, or data is required from samples that genuinely are
from populations with well separated means.

For this evaluation the sample sizes were all the same within each statis-
tical test. Additionally, it is reasonable to claim that the pool of participants
was representative of the population, and can be considered as a SRS. This
is discussed further in Section 7.3.3.

If the two tool modes were tested on the entire population, an approx-
imately normal distribution of completion rates would be expected—most
users would complete the tasks near the population mean, with a decreasing
number of outliers either side of the mean. In other words, no skew or flatly
uniform distribution is expected if the entire population were to be sampled.

It can be safely asserted that the task completion rates taken from both
samples were independent of each other. In the case of this evaluation, the
two samples actually consisted of the same set of participants, but being
examined under different tool modes. As long as the learning effect was
negligible, then independent measures could be assumed.

As discussed previously, strong steps have been taken to eliminate or
reduce any bias within the experimental design. Potential sources of bias
include learning effects on tool mode and task type, but methods have been
introduced to eliminate this. Steps have also been taken to remove any
other confounding factors such as programmer ability and scope of tasks
by isolating and mechanising the experiment as much as possible. Another
common source of bias in evaluations is where participants are self-selected.
This risk was eliminated by ensuring that the entire class took part in the
evaluation, not just the students who showed interest.

It was also important to have a working implementation of collaborative
undo for the tools used in this experiment. Without such undo facilities,
a mistake could be very costly to correct, which would confound the task
completion rates and would also be likely to negatively affect the participants’
survey answers. To implement collaborative undo, where the local user’s
changes in a file are treated differently from all remote users, is an extremely
challenging task, as discussed previously in Section A.3.2.

270

www.manaraa.com

Post-Test Data Analysis

To confirm statistical correctness, post-data analysis was also performed.
After completing the evaluations and collecting the raw task completion rates
and survey responses, it was possible to verify the assertions of normally
distributed samples and equivalent sample standard deviations.

The first step in any post-data analysis is to plot the results and confirm
that the distribution looks normal and the standard deviations are also of
approximately the correct magnitude. In the case of this experiment the
data for both the objective measures and the subjective measures appeared
satisfactory.

To formally test for equivalence between standard deviations, the rule

max(s.d.) <= 2×min(s.d.)

is often followed [75]. All statistical tests conformed to this rule for task
completion rate comparisons. As it was desirable to test for significant dif-
ferences within the survey questions as well, the survey results were also
checked statistically. All but three of the twelve survey tests for statistical
differences passed this rule. For the three tests that failed in terms of having
equivalence, the p values were all so small that it is safe to assume that the
results were still significant in determining a statistical difference [75].

A final concern that could be dismissed by statistical investigation was
that of unfair variance within tasks of the same type. As the experimental
design required two unique tasks for each type, it was important to ensure
the completion times were similar for each task within both tool modes. If
no significant difference is found in times between both tasks within each
task set, this reduces speculation of a confounded experiment due to non-
equivalent tasks. While any disparity between tasks is negated by the order
of the groups and tasks, it is beneficial to assert that there is no disparity in
the first instance.

The hypothesis is that there is no difference between the means of the
groups that completed the two different tasks for each given task type and
tool mode. For all one-way ANOVA tests, the F statistic, which is the ratio
of variance between and within groups, is computed. The probability that
this F value would occur if the two means truly were the same is checked.
When testing the F statistic, this value is compared to the F (I − 1, N − I)
distribution, where I is the count of groups and N is the count of all samples
taken. The null hypothesis that the means are equal is rejected if the F test
statistic is too large in comparison to the critical value of the F distribution
for the corresponding degrees of freedom (I and N).

When it is said, for example, that a F1,4 statistic of 0.13 with a p value of
0.74 has been computed, this implies that for a measure of two groups with

271

www.manaraa.com

six samples in total, it is expected that no real difference is detected 74 times
out of every 100 trials if the means were truly equal. This high likelihood of
detecting no difference reflects two distributions that are centered around a
similar mean. Alternatively, the F test statistic of 0.13 is considerably lower
than the critical value of 2.42 for F1,4 at the 5% significance level.

After performing the test, it was not possible to show differences between
any of the means within a set of tasks for a given tool mode. In collaborative
mode, the between files test gave F1,4=1.81, p=0.25 and the within files test
gave F1,4=0.13, p=0.74. In conventional mode, the between files test gave
F1,4=4.69, p=0.10 and the within files test gave F1,4=0.37, p=0.58. This
gives evidence that there may not be any difference between tasks for a given
task type and tool mode, as suggested, but to claim outright no significant
difference with a test of such a low power would be considered unwise.

Simple Random Sampling

Another aspect that is open for discussion for many evaluations is that of
assuming the trial group is in fact a SRS of the global population. This
judgment can be made by software engineers, statisticians, or perhaps more
suitably both groups together. A statistical purist might argue that a SRS
has not been made in the case of this evaluation, as the entire population
of the class has been sampled. Alternatively, a software engineer can argue
that this class is a SRS from the population of typical every-day software
engineers. Typical programmers are hard to define, but experienced and
competent SE students are probably a suitable average.

Summary

The experimental design took considerable effort, with duties including the
production of a precise and unambiguous training manual and task sheet,
formation of a correct evaluation methodology and plan, and verification of
statistical validity. Two similar yet distinct conflicting tasks for both within
files and between files experiments also had to be derived, and numerous
pilots of the evaluation were undertaken to ensure that the session plan ran
smoothly. Accordingly, it is envisaged that this experimental design can be
replicated to save the time of others, perhaps even using the same set of tasks.
Additionally, by using the same experimental design and set of tasks in other
studies, an objective comparison between different tools can be made.

272

www.manaraa.com

Appendix G

User Evaluation Documents

G.1 Evaluation Documents

The full task sheet, training manual, answer sheets and questionnaires are
available from the accompanying resources disc. Excerpts are given here.

G.1.1 Training Manual

Excerpt from the introduction

Excerpt from the CVS interface section

273

www.manaraa.com

G.1.2 Training Tasks

Excerpt from a conventional between files training task

Excerpt from the training tasks answer sheet

274

www.manaraa.com

G.1.3 Evaluation Tasks

Excerpt from a conventional within files evaluation task

Excerpt from the evaluation tasks answer sheet

275

www.manaraa.com

G.1.4 Surveys

Excerpt from the end of task survey

Excerpt from the end of session survey

G.2 Source Code

The Java source code for both the training and the evaluation applications
are also available from the resources disc or can be downloaded from www.

cosc.canterbury.ac.nz/clc/cse

276

www.manaraa.com

Appendix H

Accompanying Resources

A compact disc has been compiled that contains full versions of various ar-
ticles referenced within this thesis. The disc is located in an envelope inside
the back cover.

The disc contains:

• A copy of this thesis, in pdf format

• Copies of all the papers published as a result of work from this thesis,
in pdf format

• Demonstrations of the Caise-based tools, embedded within a web page
in Motion Network Graphics (MNG) format. A plug-in to support
MNG viewing within Internet Explorer is also provided

• The user evaluation documents and sample applications, as presented
in Appendix G

• A user manual for the Caise framework, including API documentation
for tool creation and framework extension

• The CAISE Event Log DTD

These resources are also available online from www.cosc.canterbury.ac.

nz/clc/cse

277

	List of Figures
	List of Tables
	Introduction
	An Example Collaborative Development Scenario
	Background
	Conventional Tools
	Collaborative Tools

	Research Goals
	Thesis Outline

	Background
	The Process of Software Engineering
	Overview
	Software Engineering Methodologies and Processes
	Software Engineering Artifacts

	The Significance of Collaboration
	Collaboration Defined
	Project Life-Cycles
	Conventional Support for Collaboration
	The Progression of Software Engineering

	Defining Real Time Collaborative Software Engineering
	Research Related to Collaborative Software Engineering
	Software Engineering Processes
	Groupware and Cscw
	Source Code Control Systems
	Human Computer Interaction
	Distributed Systems
	Software Engineering Metrics and Visualisation

	Previous Work Towards Collaborative Software Engineering
	Overview
	Design Tools
	Development Tools
	Inspection Tools
	Comparison to Caise-Based Tools

	Collaborative Software Engineering Barriers
	Groupware Support
	Building Industrial-Strength Tools

	Patterns of Collaboration
	Motivation
	The Patterns Language
	An Example Pattern

	Patterns of Interaction
	Collaboration within Software Engineering
	Modes of Collaboration
	Current Facilities for Collaboration
	Examples of Existing Collaboration Support
	Types of Awareness
	Atomic Elements of Collaboration

	Candidate Patterns of Collaborative Software Engineering
	Formal Identification of Patterns
	A Patterns Map for Collaborative Software Engineering
	Applying Patterns of Collaborative Software Engineering
	Collaboration Antipatterns

	Supporting Collaborative Software Engineering
	Tool Support for Collaborative Software Engineering
	The Need for Better Communication Support
	Common Tool Design Approaches

	Considerations for Tool Developers
	Tool Design
	Requirements for Large-Scale Development
	Threats to Tool Acceptance
	Future Tool Design

	Semantic Model-Based Software Engineering
	Constructing a Semantic Model of Software
	Sharing the Project Model
	The Code Neighbourhood

	Awareness Support
	Types of Awareness
	Media Richness
	The Collaborative Spectrum

	The Caise Framework
	The Need for a Better Tool Support
	Motivation
	Framework-Based Tool Support

	Overview of the Caise Framework
	Architecture

	Architectural Design
	The Project Semantic Model
	The Caise Event Model
	Artifact Modification
	The Caise Server
	Collaborative Tool Support
	Framework Extensibility

	Related Work

	Using the Caise Framework
	Overview of Current Caise-Based Tools
	Caise-Based Tool Construction
	Tool Construction Overview
	Tool Services
	Caise Tool Widgets
	The Caise Tool Protocol
	Building a New Caise-Based Tool
	Coding Examples

	Example CSE Tools
	Code Editors
	Diagramming Tools
	IDE Integration
	Constructing Collaborative Widgets

	Evaluation of the Caise Framework and Tools
	Heuristic Evaluation
	Heuristic Evaluation of Groupware
	Heuristics for CSE Evaluations

	Visualisation Tools
	The Visualisation Pipeline
	User Activity Visualisation
	Artifact-Span Visualisation

	User Evaluations
	Evaluation Method
	Evaluation Results
	Threats to Validity
	Discussion

	Framework Performance
	Memory Load
	Network Load
	Response Times
	Feedback Information versus Number of Users

	Caise in an Industrial Context
	Managing Groups and Individuals
	Working from a Source Code Repository
	Partitioning of Projects
	Compilation Crosstalk
	Private Work

	Large Software Projects
	Tailoring Feedback

	Areas of Enhancement
	CSCW Floor Control Policies
	Atomic Operations versus Refactoring

	Conclusions and Future Work
	Conclusions
	Future Work
	Areas of Investigation
	Future Evaluations

	References
	Acknowledgments
	Appendices
	The Caise Server
	Overview
	Language Support
	Parsers
	Source Code Formatters

	Artifacts
	The Caise Document Buffer
	Implementing Collaborative Undo
	Tool Manager Plug-Ins

	Server Applications
	The Caise Event Log
	Project Administration
	The Plug-Ins Interface
	Interprocess Communication
	Asynchronous Communication
	Synchronous Communication
	Selection of Distributed Communication Technologies

	Language Specification for Decaf
	Overview
	An Example Source File
	An Example Grammar

	Caise Event Log DTD
	Caise Server Plug-Ins Specification
	CAISEAnalyser
	CAISEFeedback
	CAISEFormatter
	CAISEParser
	CAISEServerApp
	CAISEToolManager

	IDE Integration
	User Evaluation Design
	Overview
	Aim and Purpose
	Evaluation Methodology
	Participants
	Physical Layout
	Apparatus
	Supporting a Minimal Code Repository Interface
	Tool Modes
	Task Types
	Order of Groups and Tasks
	Training Manual
	Evaluation Tasks
	User Survey
	Statistical Validity

	User Evaluation Documents
	Evaluation Documents
	Training Manual
	Training Tasks
	Evaluation Tasks
	Surveys

	Source Code

	Accompanying Resources

